15 research outputs found

    The Cdc42 GEF Intersectin 2 controls mitotic spindle orientation to form the lumen during epithelial morphogenesis

    Get PDF
    Epithelial organs are made of tubes and cavities lined by a monolayer of polarized cells that enclose the central lumen. Lumen formation is a crucial step in the formation of epithelial organs. The Rho guanosine triphosphatase (GTPase) Cdc42, which is a master regulator of cell polarity, regulates the formation of the central lumen in epithelial morphogenesis. However, how Cdc42 is regulated during this process is still poorly understood. Guanine nucleotide exchange factors (GEFs) control the activation of small GTPases. Using the three-dimensional Madin–Darby canine kidney model, we have identified a Cdc42-specific GEF, Intersectin 2 (ITSN2), which localizes to the centrosomes and regulates Cdc42 activation during epithelial morphogenesis. Silencing of either Cdc42 or ITSN2 disrupts the correct orientation of the mitotic spindle and normal lumen formation, suggesting a direct relationship between these processes. Furthermore, we demonstrated this direct relationship using LGN, a component of the machinery for mitotic spindle positioning, whose disruption also results in lumen formation defects.This work was supported by grants from the Human Frontier Science Program (HFSP-CDA 00011/2009) and Marie Curie (IRG-209382) to F. Martín- Belmonte, National Institutes of Health grants (R01 DK067153 and R01 DK074398) to K. Mostov, and grants from the Ministerio de Ciencia e Innovación to F. Martín-Belmonte (BFU2008-01916) and M.A. Alonso (BFU2006- 01925) and to F. Martín-Belmonte and M.A. Alonso (CONSOLIDER CSD2009-00016). An institutional grant from the Fundación Ramón Areces to the Centro de Biología Molecular Severo Ochoa is also acknowledged.Peer reviewe

    Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells

    Get PDF
    The formation of epithelial tissues requires both the generation of apical-basal polarity and the coordination of this polarity between neighbouring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to the formation of a singular apical membrane, resulting in the contribution of each cell to only a single lumen. Here, from a functional screen for genes required for three-dimensional epithelial architecture, we identify key roles for synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in the generation of a single apical surface per cell. Slp2-a localizes to the luminal membrane in a PtdIns(4,5)P(2)-dependent manner, where it targets Rab27-loaded vesicles to initiate a single lumen. Vesicle tethering and fusion is controlled by Slp4-a, in conjunction with Rab27/Rab3/Rab8 and the SNARE syntaxin-3. Together, Slp2-a/4-a coordinate the spatiotemporal organization of vectorial apical transport to ensure that only a single apical surface, and thus the formation of a single lumen, occurs per cell
    corecore