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SUMMARY 

 

Hematopoiesis, the process of mature blood and immune cell production, is functionally 

organized as a hierarchy, with self-renewing hematopoietic stem cells (HSCs) and multipotent 

progenitor (MPP) cells sitting at the very top1,2. Multiple models have been proposed as to what 

the earliest lineage choices are in these primitive hematopoietic compartments, the cellular 

intermediates, and the resulting lineage trees that emerge from them3-10. Given that the bulk of 

studies addressing lineage outcomes have been performed in the context of hematopoietic 

transplantation, current lineage branching models are more likely to represent roadmaps of 

lineage potential rather than native fate. Here, we utilize transposon (Tn) tagging to clonally 

trace the fates of progenitors and stem cells in unperturbed hematopoiesis. Our results describe 

a distinct clonal roadmap in which the megakaryocyte (Mk) lineage arises largely independently 

of other hematopoietic fates. Our data, combined with single cell RNAseq, identify a functional 

hierarchy of uni- and oligolineage producing clones within the MPP population. Finally, our 

results demonstrate that traditionally defined long-term HSCs (LT-HSCs) are a significant 

source of Mk-restricted progenitors, suggesting that the Mk-lineage is the predominant native 

fate of LT-HSCs. Our study provides evidence for a substantially revised roadmap for 

unperturbed hematopoiesis, and highlights unique properties of MPPs and HSCs in situ.  

 

MAIN 

To probe native lineage relationships in the fully unperturbed bone marrow (BM), we used the 

Sleeping Beauty (SB) lineage tracing model and TARIS, an improved Tn-integration sequencing 

technique (Fig. 1a, and Extended Data Fig. 1 and 2)11. Our analysis relies on comparing tags 

across multiple differentiated populations at different time points to understand the dynamics of 

lineage coupling, without the need to isolate and transplant prospective progenitor populations 



(Fig. 1b). We pulsed adult SB mice with doxycycline (Dox) for 2 days and, at 1, 2, 4 and 8 

weeks after induction, sorted Tn-labelled (DsRed+) nucleated erythroblasts (Er), megakaryocyte 

(Mk) progenitors, granulocytes (Gr), monocytes (Mo) and B-cell progenitors (B) (Fig. 1c). 

Importantly, control experiments demonstrated that negligible amounts of transposition occur 1 

day after removal of Dox (Extended Data Fig. 3).  

 

We observed that blood lineages were mostly segregated up until 4 weeks, suggesting their 

replacement by unilineage progenitors during this first month (Fig. 1d). At 4 weeks, we began to 

detect a significant number of shared tags across lineages, revealing the activity of common 

progenitors (Fig. 1d, Extended Data Fig. 4). At 4 weeks, 40.5%(±8.4) of all Mo detected tags 

(approximately 289±89 clones) were also found in the Gr compartment, confirming their well-

established common origin (Fig. 1e)4. Unexpectedly, a similar proportion of Er clones were also 

found shared with Gr/Mo (My) tags (Fig. 1d-e), revealing a common origin for erythrocytes, 

granulocytes and monocytes at this stage. Remarkably, we detected virtually no Mk clones that 

were shared exclusively with Er cells during the whole period of observation, which would have 

been predicted had a megakaryocyte-erythroid progenitor (MEP)-like cell existed (Fig. 1d-e and 

Extended Data Fig. 4b)12,13. At 8 weeks, our analysis revealed the activity of a set of 

multilineage clones (239±58), with lymphoid (B), My and Er contribution, but still with no 

presence in Mk, indicating the existence of Mk-deficient lympho-erythromyeloid (LEM) 

progenitors (Fig. 1d and 1e). We did observe a very small (9.7±2.8), yet increasing, number of 

Mk tags shared with multiple lineages after 8 weeks (Fig.  1e and Extended Data Fig. 4a and b), 

suggesting that clonal Mk-lineage production can also be associated with multilineage 

outcomes, although at lower frequencies. Spearman rank correlation analyses of tag read 

distribution between lineage pairs showed a progressive association of Gr-Mo(My), Er-My and 

B-My progenitors, segregated from Mk progenitors (Fig. 1f-g). To address potential sampling 

and sensitivity limitations, we performed independent TARIS amplifications (Extended Data Fig. 



5) and clone-specific PCRs (not-shown). Taken together, our results provide evidence for novel 

lineage couplings during unperturbed hematopoiesis, where the Mk lineage is produced largely 

independently from the other hematopoietic lineages, and argue for the robust activity of Er-My, 

Ly-My and LEM progenitor clones. 

 

We next aimed to identify ancestral relationships by comparing the clonal repertoires of 

differentiated cells and previously defined progenitor populations. Classically, oligopotent 

progenitors reside in the common myeloid progenitor (CMP), granulocyte-monocyte progenitor 

(GMP) and MEP phenotypic gates (referred together as myeloid progenitors, or MyPs)4. Our 

data revealed largely unilineage outcomes for detected MyPs (89.0%±0.8), suggesting that 

these populations represent a collection of lineage restricted progenitors, functionally validating 

predictions from single cell expression profiling (Extended Data Fig. 6)14-16. We next focused on 

the MPPs, the cellular subset proposed to be upstream of MyPs. At 1 and 2 weeks, we 

observed a small number of ‘active’ MPP tags (overlapping with Lin+ tags), which aligned mostly 

with single lineages (1 wk: 75.8%±5.0, 2 wk: 66.3%±6.1), suggesting the existence of a small 

population of lineage-committed MPPs that rapidly produce differentiated progeny (Fig. 2a-b, 

Extended Data Fig. 7a). MPP output significantly increased at 4-8 weeks for all lineages 

(9.35%±0.6 of all MPP tags at 8 weeks), consisting mostly of oligolineage Er-My clones 

(79.2%±5.3 of active MPP clones). A robust number of LEM MPP clones (12±2) were detected 

beginning at 8 weeks (Fig. 2a), consonant with our analysis of Lin+ fractions (Fig. 1f). Although 

we also observed oligolineage Mk-producing MPP clones, Mk overlap was more lineage-

restricted than any other lineage, even after 8 weeks (Mk: 67.8%±8.0 vs. other: 22.1%±4.6; Fig. 

2a-b, Extended Data Fig. 7b), indicating that at least a subset of MPPs is responsible for a 

stable restricted contribution to the Mk lineage.  

 



Our analyses also provided relative quantitative information about the dynamics of lineage 

replacement by MPPs.  For instance, the average clone size of MPP-derived Er-My clones at 8 

weeks was 18.3±7.7-fold larger when compared to non-MPP-derived clones, suggesting a 

significant cellular amplification, in contrast to the B lineage (1.2±0.4-fold; Fig. 2c). In addition, 

we found that the Er lineage was replaced at the fastest rate, with at least 35% of all Er reads 

overlapping with MPPs after just 2 weeks, from just a handful of Er-committed MPPs (Fig. 2d 

and 2e). Comparably, the Gr/Mo-producing MPPs achieved similar levels of replacement only 

after 2 months. Considering that our analysis cannot measure contribution of MPP clones that 

disappear from the MPP pool (i.e. by cell death or differentiation), our results likely 

underestimate the overall MPP contribution.  

 

In order to provide further insight into the heterogeneity and hierarchy of the HSC/MPP 

compartment, we sorted subsets within these populations using previously described surface 

markers and interrogated their single cell gene expression landscape using InDrop (Fig. 3a-

c)9,17. Louvain-Jaccard clustering analysis of transcriptomes resulted in 12 reproducibly distinct 

clusters (Fig. 3b). The majority of analysed cells (78.9% of all subsets combined) fit into one of 3 

major clusters that we labelled as unprimed (“C1”, “C2”, “C3”) based on the lack of expression 

of lineage-restricted gene signatures (Supplementary Table 2, Extended Data Fig. 8 and 9). 

Intriguingly, we also identified several primed clusters (21.1% of HSC/MPPs) that formed 

branches defined by progressive expression of genes associated with lineage commitment (Fig. 

3b-d, right). Predictably, cells indexed as LT-HSCs and MPP1s (also known as short-term 

HSCs) mostly fit into the “C1” (67.9%) and “C2” (78.3%) clusters, respectively. In contrast, other 

MPP subsets displayed different degrees of heterogeneity. MPP2s contained the largest 

proportion of primed cells (59.3%), and MPP4s the least (13.2%) (Fig. 3c-d). MPP2s comprised 

a larger number of Er-primed (18.7%) and Mk-primed (21.9%) cells, whereas MPP3s contained 

a larger number of My-primed cells (20.8%) (Fig. 3c-d and Extended Data Fig. 8b). Using Tn 



tracing, we confirmed that MPP2s presented a preference for Mk production, and generated 

less oligolineage output (5%±5 of all active clones) within the first week, where their immediate 

progeny is likely to be measured, compared to MPP3s and MPP4s (40.17%±11.4) (Fig. 3e-f). 

Analysis of tags not arising from upstream progenitors at 4 weeks revealed similar findings (Fig. 

3g-h). On the contrary, MPP4s produced most LEM and multilineage clones (Fig. 3h) and 

preferentially overlapped with MPP1/ST-HSCs, suggesting that at least a fraction of MPP4s 

represent direct activated progeny of MPP1/ST-HSCs (Fig. 3i). Combined, our data support the 

notion that a functional hierarchy, consisting of progenitors at varying degrees of lineage 

priming, exists already within HSCs/MPPs.    

 

Our single cell RNAseq data also revealed that a subset of marker-defined LT-HSCs exhibited 

Mk-lineage priming (Fig 3c-d, Extended Data Fig. 9). This is in line with previous reports of 

multipotent, yet platelet-biased subsets of LT-HSCs in the context of transplantation10,18-23. 

However, the physiological relevance of this observation in native hematopoiesis is unknown. 

With these precedents, we analysed the Lin+ Tn tag overlap of sorted LT-HSCs. While only a 

very small number of LT-HSC clones was active 4 weeks after labelling (5.5%±2.3), remarkably, 

a large majority of these clones were found exclusively in the Mk population (Fig. 4a-b and 

Extended Data Fig. 10a). This Mk-restricted output of LT-HSCs was more pronounced after 30 

weeks post-labelling (Mk:13.3%±5.6, My-Er:3.2%±1.0) (Fig. 4c). Quantitatively, LT-HSCs 

accounted for replacing at least 31% of the total Mk pool, compared to just 3.8% of My-Er reads 

(Fig. 4d). Among all Mk cells that had a detectable tag in primitive populations, approximately 

half demonstrated overlap with LT-HSCs and the other half with MPPs (where no LT-HSC tag 

was detected) (Extended Data Fig. 10b). MPP-overlapping clones contributed to the Mk lineage 

to a similar extent as LT-HSCs, drastically differing from Ly-My-Er production, which is 

predominantly MPP driven (Fig. 4e and Extended Data Fig. 10c). Our analyses also revealed 

that many LT-HSC contribute to Mk in the absence of any intermediates in the MPP 



compartment (Fig. 4a), suggesting that at least a subset of LT-HSCs generates Mk lineage cells 

through a ‘direct’ pathway.  

 

Previous studies have shown that the commonly used LT-HSC gate contains unilineage CD41+ 

Mk-restricted progenitors as assayed by transplant or culture10,22. To rule out potential 

contamination by such cells, we aimed to determine whether Mk-producing LT-HSC clones in 

situ had properties of classical LT-HSCs in the context of transplantation. For this, we 

transplanted clonally labelled LT-HSCs isolated from mice 4-weeks post induction, and at 16 

weeks post-transplantation we purified mature lineages from recipients and compared their Tn 

repertoires with those of cells initially isolated from the donor (Fig. 4f). We observed that 6 out of 

8 detected Mk-restricted LT-HSC clones in the donor were able to generate multilineage 

progeny in recipients (Fig. 4g-i). We reached similar conclusions when evaluating the culture 

potential of in situ Mk-producing LT-HSC clones (Extended Data Fig. 10d-e). Additionally, our 

results demonstrate that Mk-production is not exclusive to the CD41+ LT-HSC fraction 

(Extended Data Fig. 10f-g). Thus, we conclude that the majority of Mk-producing clones residing 

in the LT-HSC gate are not simply Mk-restricted progenitors, but clones that can exhibit 

multipotency upon transplantation.  

 

Our work here uncovers critical features of the native hematopoietic process. In our model, as 

much as half of the megakaryocytic lineage is produced independently of other lineages by cells 

at the top of the hematopoietic ladder (Fig. 4j). A heterogeneous hierarchy of lineage-restricted 

and oligolineage progenitors, historically classified as MPPs, produce other hematopoietic 

lineages with selective lineage couplings. While our work still supports a model for progressive 

restriction of developmental potential, it suggests that these events are clonally heterogeneous 

and occur much earlier in the hematopoietic hierarchy, in line with recent data7,8,14,16. Though 

our data fail to provide any evidence for CMP or MEP fates in situ, many experiments have 



provided evidence for MEP-like cells at a clonal level4,12,13,24. We posit that while Mk-Er 

bipotential exists in transplant or culture setting, this fate is not substantially manifested in 

unperturbed conditions. Alternatively, such cellular behaviour might be too transient to be 

captured with our technology.  

 

Our data demonstrate that at least a fraction of LT-HSCs behave as potent Mk-progenitors, 

indicating that the Mk fate is the predominant fate of HSCs in situ. However, these same cells 

exhibit potential for multilineage outcomes following transplantation. Thus, our findings highlight 

the critical differences between studying native fate versus potential in stem cell biology. 

Although we are unable to conclude whether a particular subset or all LT-HSCs will eventually 

display Mk-producing behaviour, we favour the idea that most LT-HSC clones transition through 

a Mk-primed state with age. Our data also suggest that an MPP population (within MPP2) is 

significantly involved in Mk production. It remains to be determined whether these represent two 

different pathways for Mk production or whether LT-HSCs are upstream of MPP2s.  Finally, our 

results are still consonant with the idea that adult LT-HSCs have a limited lympho-myelo-

erythroid output during steady-state11,25, though this finding has been debated26. Future work 

with second generation cell barcoding strategies27,28 in combination with Cre-based labelling will 

be needed to elucidate full lineage histories and determine the mechanisms of fate restriction.  
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FIGURE LEGENDS 

Fig. 1. Clonal analysis of hematopoietic lineage fates in the native bone marrow. a, 

M2/HSB/Tn mouse model. Addition of doxycycline (Dox) induces random transposition of the 

Tn, and concomitant cell labelling with DsRed. The Tn insertion site is stable after removal of 

Dox. b, Transposon lineage tracing paradigm. Shared tags can be detected between a self-

renewing progenitor stem cell and its progeny, or between two different mature cell populations. 

c, Experimental design. M2/HSB/Tn mice were labelled with Dox for 2 days and 5 blood 

lineages were isolated from BM after different periods of time. Tn-insertion tag libraries were 

prepared and sequenced for each population. d, Alignment of Tn tags from different lineage-

committed (Lin+) blood cell populations in the BM at 1-8 weeks. Tags are coloured by frequency 

in each lineage, and organized by rank. Each chart is representative from 3 independent 

experiments. e, Percentage of clonal overlap between designated lineage pairs (left), and 

quantification of total number of detected bi/tri-lineage clones at 1-8 weeks (right). My refers to 

either Gr or Mo lineage. Mean +/-s.d. from 3 independent mice. f, Spearman correlation 

coefficient (r) matrices for all Lin+ tags at 1-8 weeks. Each matrix is average from 3 independent 

experiments per time point. g, Hierarchical clustering of blood lineages using (1–r) as the 

distance measure (4 and 8 weeks post-labelling). 

Fig. 2. Functional heterogeneity of MPP lineage fates in steady state hematopoiesis. a, 

Chart shows the alignment of all active MPP tags together with the five analysed blood lineages 

at each time point (all tags collected from 3 mice per time point). LT-HSC tags were analysed in 

parallel and excluded from the analysis to represent only MPP behaviour. b, Fraction of active 

MPP tags that overlap with a single lineage (calculated independently for each lineage). Values 

are mean +/- s.e.m. from 3 mice. *pMk-Er=0.13, pMk-Gr=0.03, pMk-Mo=0.03, pMk-B=0.001 (8 wk). c, 

Distribution of Lin+ clone sizes comparing tags overlapping with MPP vs. non-overlapping at 8 

wk. Values are median and interquartile ranges of all detected clones from 3 mice. 



*Kolmogorov-Smirnov pMk=0.03, pB=0.25, pEr=0.03, pGr=0.001, pMo=0.003. d, Fraction of each 

lineage replaced by MPPs calculated as the percentage of total MPP-overlapping lineage reads 

over time. Values are mean +/- s.e.m. from 3 independent mice. *pEr-Gr/Mo/B=0.04, pEr-Mk=0.03 (2 

weeks) and pB-Er/Mk=0.03, pB-My=0.04 (8 weeks). e, Average number of detected active MPP 

clones per lineage per mouse at different time points (normalized for %DsRed labelling 

efficiency).  

Fig. 3. Transcriptional and functional hierarchy of HSC and MPP subsets. a, Experimental 

design for inDrops experiment (left). Transcriptional fate map of combined FACS-sorted subsets 

using the SPRING representation (subsampled in silico to represent proportions of the Lin-

Sca1+cKit+ gate. Points represent a single HSC/MPPs distributed according to their similarity 

using gene expression variation. b, In silico identification of different cell populations within all 

combined HSC and MPP subsets. Non-primed clusters 1-3 (C1-C3, left) and lineage-primed 

clusters (right) are presented separated and labelled according to their primed lineage 

signatures: Neu, neutrophils, DC, dendritic cells, T, T-cell progenitors, B, B-cell progenitors, Ery, 

erythroid progenitors, Mk, megakaryocyte progenitors: Mo1 and Mo2 represent two monocyte-

like signatures. c, Plots showing localization of each sorted HSC/MPP subset within the 

combined SPRING plot. Top right, fraction of cells from each sorted HSC/MPP subtype (and 

LSKs) that group within primed or non-primed clusters. d, Hierarchical clustering (Ward) of 

sorted HSC/MPP subsets. For each FACS sorted population, the fraction of cells corresponding 

to each cluster was used to analyse the similarity between subsets. The arrow points out the 

Mk-primed cluster within the LT-HSC gate. e, Fraction of lineage-restricted MPP-overlapping 

clones corresponding to each lineage, for each MPP subset at 1 week. Values are mean of 3 

independent mice. f, Fraction of oligolineage output of each MPP subset after 1 week. Values 

are mean +/- s.e.m. of three independent mice. *Paired two-tailed t-test (MPP2 vs. MPP4) 

p=0.033 g, Alignment of Lin+ progeny tags of different MPP subsets (excluding tags present in 



HSCs/MPP1s) at 4 weeks. h, Fraction corresponding to each MPP subset for each 

representative lineage fate (including restricted, oligo and multilineage output) at 4 weeks (all 

tags detected from 4 mice). i, Frequency of MPP2/3/4 tags (and LT-HSC tags) overlapping with 

MPP1 at 1-8 weeks (average of 3 mice per time point).   

Fig. 4. Steady state megakaryocyte output from bona fide LT-HSCs. a, LT-HSCs, MPPs 

and Lin+ cells were purified from bone marrow at 4 and 30 wk and their Tn-tag content was 

analysed. Only the LT-HSC tags overlapping with detectable Lin+ progeny are shown. b, Pie-

chart distribution of types of progeny detected from LT-HSCs at 4 weeks and 30 weeks after 

labeling. Data are pooled from 4 independent M2/HSB/Tn mice per time point. c, Percentage of 

labelled LT-HSC clones producing progeny at 1-8 weeks. Values are mean +/- s.e.m of 3-4 

independent mice. d, Dynamics of Mk vs. non-Mk lineage replacement by LT-HSCs (measured 

as % of overlapping/total Lin+ reads). Values are mean +/- s.e.m. of 3-4 independent mice. Ratio 

paired t-test p=0.014. e, Dynamics of Mk vs. Er/My lineage replacement by MPPs (measured as 

% of overlapping/total Lin+ reads). Values are mean +/- s.e.m. of 3-4 independent mice. Ratio 

paired t-test p=0.599. f, Experimental design for parallel analysis of native vs. transplant output 

of LT-HSC clones. g, Alignment of all post-transplantation LT-HSC-derived lineages with 

unperturbed donor lineage tags. h, Pie-chart distribution of successfully engrafted LT-HSC 

clones by donor behaviour. Only Mk-restricted and My-restricted output was observed. Inactive 

means non-detectable output in the donor. i, Post-transplantation outcomes comparing donor-

inactive vs. Mk-producing LT-HSC clones. j, Lineage fate landscape of unperturbed 

hematopoiesis. Self-renewing LT-HSCs preferentially replace Mk under steady state, and 

principally contribute to other blood lineages during transplantation or after injury. In contrast, 

MPPs take care of the majority of steady-state Ly, Er and My blood production. Different MPP 

sorting gates enrich for heterogeneous collections of lineage-primed and unprimed cell states 

within a continuum of lineage commitment pathways.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



METHODS 

Mice. The M2/HSB/Tn mice were generated as previously described11. To induce Tn 

mobilization 8-10 weeks old male or female mice with the M2/HSB/Tn genotype were fed with 2 

mg/ml Dox together with 5mg/ml sucrose in drinking water for 48h. Thereafter, Dox was 

removed and successful labelling was verified by retro-orbital sinus peripheral blood collection 

and analysis (70 µl) after 1 week. All animal procedures were approved by the Boston 

Children’s Hospital Institutional Animal Care and Use Committee. Previous studies have 

estimated that most hematopoietic lineages are replaced by MPPs within 1-2 months after 

label25,29-31. Thus, for Lin+ lineage coupling studies, M2/HSB/Tn mice were analysed within the 

first 8 weeks after labelling. Since MyPs have limited self-renewal capacity and are rapidly 

replaced by MPPs, we performed the MyP analysis at short time points post-labelling (1 week) 

and only considered Tn tags not simultaneously present in MPPs. 

 

Bone marrow preparation. After euthanasia, whole BM (excluding the cranium) was 

immediately isolated in 2% fetal bovine serum (FBS) in phosphate buffered saline (PBS), and 

erythrocytes were removed with red blood cell lysis buffer. CD45.1 (Ly5.1) mice were used as 

transplantation recipients (B6.SJL-Ptprca Pep3b/BoyJ, stock # 002014, the Jackson 

Laboratory).  

 

Fluorescence activated cell sorting (FACS). Lineage depletion was performed using 

Magnetic Assisted Cell Sorting (Miltenyi Biotec) with anti-biotin magnetic beads and the 

following biotin-conjugated lineage markers: CD3e, CD19, Gr1, Mac1, and Ter119. Cell 

populations from BM were purified through 4-way sorting using FACSAria (Becton Dickinson) 

and 6-way sorting using MoFlo XDP (Beckman Coulter). The following combinations of cell 

surface markers were used to define these cell populations: Erythroblasts: 7/4- Ly6G- Ter119+ 



CD71+ FSChi, Granulocytes: Ly6G+ 7-4+ B220- Ter119-, Monocytes: Ly6G- 7/4+ B220- Ter119-, 

pro/pre-B cells: Ly6G- B220+ IL7Ra+, Megakaryocyte progenitors: Lin- cKit+ Sca1- CD150+ 

CD41+, MPP1/ST-HSC: Lin- cKit+ Sca1+ Flt3- CD150- CD48-, MPP2: Lin- cKit+ Sca1+ Flt3- 

CD150+ CD48+, MPP3: Lin- cKit+ Sca1+ Flt3- CD150- CD48+, MPP4: Lin- cKit+ Sca1+ Flt3+ 

CD48+, LT-HSC: Lin- cKit+ Sca1+ Flt3- CD150+ CD48- (+/-CD41). Other populations are defined 

in Supplementary Table 1. Representative examples of sorted populations are shown in 

Supplementary Figures 1-3. Flow cytometry data were analysed with FlowJo (Tree Star). For Tn 

tag content extraction and analysis, we FACS-sorted all the available cells from the whole BM 

extract using purity modes (~98% purity) at ~75-80% efficiency. The list of antibodies (their 

clone number, the commercial house and concentration) was the following: Ly6B.2 FITC (7/4, 

Miltenyi, 1:100), Ly6G Alexa Fluor 700 (1A8, eBiosciences, 1:50), Ter119 APC (TER119, eBiosciences, 

1:100), CD71 BV510 (C2, BD biosciences, 1:100), CD45R(B220) eFluor 450 (RA3-6B2, eBiosciences, 

1:100), CD19 APC/Cy7 (1D3, eBiosciences, 1:50), CD127(IL-7Ra) PE/Cy7 (A7R34, Biolegend, 1:25),  

CD117 (cKit) FITC/APC (2B8, eBiosciences, 1:100), Ly6a (Sca1) PE/Cy7 (D7, eBiosciences, 1:100), 

CD135 (Flt3) APC (A2F10, Biolegend, 1:25), CD150 PE/Cy5 (TC15-12F12.2, Biolegend, 1:100), CD48 

APC/Cy7 (HM48-1, BD biosciences, 1:100), CD41 BV605 (MwReg30, Biolegend, 1:100), CD3e biotin 

(145-2C11, eBiosciences, 1:100), CD19 biotin (MB19-1, eBiosciences, 1:100), Gr1 biotin (RB6-685, 

eBiosciences, 1:100), CD11b (Mac1) biotin (M1/70, eBiosciences, 1:100), Ter119 biotin (TER119, 

eBiosciences, 1:100), Streptavidin eFluor 450 (eBiosciences, 1:200), FcgRII/III eFluor 450 (93, 

eBiosciences, 1:100), CD34-FITC (RAM, eBiosciences, 1:25), CD42 APC (HIP1, Biolegend, 1:100), CD9 

PE (MZ3, Biolegend, 1:200).  

Transplantation assays. Whole BM cells or sort-purified LT-HSCs from M2/HSB/Tn mice were 

transplanted in 150 µl of �MEM (Gibco, Thermo-Fisher Scientific) through retro-orbital injection 

into gamma-irradiated recipient mice (split dose of 2.5+2.5 Gy for sublethal irradiation, and 



5.5+5.5 Gy for lethal irradiation, with 2h interval). Donor cell engraftment and label frequency 

was analysed after 16 weeks using an LSRII equipment (Becton Dickinson).  

 

HSC culture assays. 1000 sort-purified LT-HSCs from M2/HSB/Tn mice were cultured together 

with 10,000 MS-5 stromal cells in round-bottom 96-well plates together with SCF (100 ng/ml), 

TPO (100 ng/ml), Flt3L (50 ng/ml), IL7 (20 ng/ml), IL3 (10 ng/ml), IL11 (50 ng/ml), and GM-CSF 

(20 ng/ml) in �MEM with 1% Penicillin/Streptomycin and 10% FCS (Thermo Fisher) for two 

weeks, changing the media 24h after sort and then every 48h (Becton Dickinson). Myeloid and 

lymphoid HSC progeny was FACS sorted after labelling with Gr-1, Mac-1, CD19 and B220 

antibodies (eBiosciences). All growth factors and cytokines were mouse recombinant and 

purchased from Peprotech.  

 

DNA isolation and amplification. Cells of interest were sorted into 1.7 ml tubes and 

concentrated into 5-10 µl of buffer by low speed centrifugation (700 g for 5 minutes). Samples 

with fewer than 10,000 cells were subjected to whole genome amplification with Phi29 kit 

(Epicenter/Lucigen) according to manufacturer’s instruction. Samples with more than 10,000 

cells were purified by QIAamp DNA Micro kit (56304, Qiagen).  

 

TARIS (T7-amplification mediated recovery of integration sites). Our original technique for 

molecular identification of Tn integration sites was based on ligation-mediated PCRs (LM-PCR). 

Others and we have observed significant tag amplification biases with this method, which limit 

the quantitative potential of the clonal data obtained11,32,33. In order to improve the current 

technique, we have developed a method based on T7-polymerase linear amplification and 

recovery of integration sites (TARIS) (Extended Data Fig. 1). This method provided similar 

sensitivity levels as LM-PCR but more quantitatively and reproducibly captures the clonal 



composition of complex samples (Extended Data Fig. 2). For TARIS, the total purified DNA was 

subjected to enzymatic restriction with 10U of HindIII-HF (NEB) overnight. TARIS adaptor 

primer was hybridized and extended using 1U Klenow DNA polymerase (NEB) for 2h. Then, 

total DNA was cleaned up using AMPure XP SPRI beads (Beckman Coulter) and used as a 

template for a 20 µl T7 RNA polymerization reaction (NEB, High Yield Hiscribe T7 kit) overnight. 

Then, the template was digested with 1U of Turbo DNase (Ambion) and the RNA product was 

polyadenylated using 1U of polyA RNA polymerase (NEB). The polyA RNA was purified with 

SPRI beads, and then converted into cDNA using iScript reverse transcriptase (Biorad). TARIS 

cDNA was used as template for 30 PCR cycles using the HSB-transposon specific Tn-1C, the 

MAF-Tn-1F and the MAR-polyT primers for 30 cycles, and then 12 cycles of indexing PCR 

using the MP1 and ID primers (ID1-48) and the KAPA HiFi PCR kit. Solexa sequencing was 

carried out on HiSeq 2000 (Illumina) at the Tufts Genomics Core. Tag identification and 

alignment was performed as previously described11. Briefly, we extracted the Tn-containing 

reads from each fastq file, trimmed the adaptor and Tn sequences and aligned the integration 

sites to the reference mouse genome (Ensembl mm9) using bowtie 1.2. Then, reads were 

normalized between samples (per million reads). Sequences were always compared with at 

least one additional independently labelled mouse with libraries prepared in parallel and 

sequenced in the same HiSeq lane to account for contaminations. Tags present in the control 

mouse samples were filtered out (contaminating reads). Next, read frequencies were column-

normalized, and graphs were coloured using a logarithmic scale. For hierarchical clustering 

based on Tn tag distribution, we first determined the Spearman correlation matrix for the 

compared populations and then performed agglomerative clustering (Single method) using (1 – 

correlation coefficient) as the distance metric. Curve fitting was performed with the Lowess 

function. All indicated statistical tests were two-tailed parametric t-tests using Welch’s s.d. 

correction (exceptions are mentioned where appropriate). Data visualization and statistical 

analysis was performed using Excel, R (v.3.3.1) and Graphpad Prism (v7). Primers used were: 



TARIS adaptor primer (5’-GCA TTA GCG GCC GCG AAA TTA ATA CGA CTC ACT ATA GGG 

AGT CTA AAG CCA TGA CAT C-3’), Tn1-C primer (5’-CTT GTG TCA TGC ACA AAG TAG 

ATG TCC-3’), MAF-Tn1-1F primer (5’-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT 

NNN NCG AGT TTT AAT GAC TCC AAC T-3’), and MAR-polyT primer (5’-GTG ACT GGA GTT 

CAG ACG TGT GCT CTT CCG ATC TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT V-3’). 

All primers were ordered from IDT DNA technologies, at 100 nmole scale and HPLC-purified.  

 

Single-cell RNA sequencing and low-level data processing. Transcriptome barcoding and 

preparation of libraries for single-cell mRNA-sequencing was performed using the most up-to-

date inDrops protocol34. For our experiment, the Lin-Sca1+cKit+ BM fraction from a single BL6 

mouse was labelled and FACS sorted to purify the entire LT-HSC, MPP1, MPP2, MPP3 and 

MPP4 fractions. Approximately 2000 cells of each fraction were encapsulated and libraries for 

all the populations were prepared the same day, with the same stock of primer-gels and RT-mix. 

Libraries were sequenced on an Illumina NextSeq 500 sequencer using a NextSeq High 75 

cycle kit: 35 cycles for read 1, 6 cycle for index i7 read, and 51 cycles for read 2. Raw 

sequencing reads were processed using the InDrop pipeline previously described, with the 

following modifications: Bowtie version 1.1.1 was used with parameter –e 100; all ambiguously 

mapped reads were excluded from analysis; and reads were aligned to the Ensembl release 81 

mouse mm10 cDNA reference.   

 

Data visualization using SPRING. We combined mRNA count matrices from five 

simultaneously processed and indexed libraries (LTHSC-2A, STHSC-2A, MPP4-2A, MPP3-2A, 

MPP2-2A). Cells with few mRNA counts (< 1000 UMIs) and stressed cells (mitochondrial gene-

set Z-score > 1) were filtered out35. The remaining high-quality cells (4248) were total-counts 

normalized. We next filtered genes, keeping those that were well detected (mean expression > 

0.05) and highly variable (CV > 2). Finally, we reduced dimensionality by Z-scoring each gene 



and applying principal components analysis (PCA), retaining the top 50 PCs. The cells were 

then visualized using SPRING, a graph-based single-cell viewing interface36. Visual inspection 

of the SPRING plot revealed a strong cell cycle signature defined by high expression of genes 

associated with the G2/M phase (Ccnb1, Plk1, Cdc20, Aurka, Cenpf, Cenpa, Ccnb2, Birc5, 

Bub1, Bub1b, Ccna2, Cks2, E2f5, Cdkn2d). Hypothesizing that this cell cycle signature could 

affect high dimensional distances between cells in a way that obscures their segregation by 

lineage-specific genes, we attempted to remove it37. Specifically, we filtered from the analysis 

genes that were significantly correlated with the sum Z-score of G2/M genes (P < 10-4, 

Bonferroni corrected; 401 genes total, resulting in 28205 remaining genes). PCA and clustering 

analysis was repeated using the reduced gene list.  

 

Clustering of single-cell profiles. We performed unsupervised clustering of the processed 

single-cell data with the Louvain-Jaccard method package from Shekhar et al38. To assess 

cluster stability and choose the value of k, we downsampled 85% of cells and applied the 

Louvain-Jaccard method using 50 Principal Components. We tested k values from 10 to 30 and 

for each k we compared 100 times the randomly downsampled clustering using the Jaccard-

index measurement in the R package fpc (Flexible Procedures for Clustering). We considered a 

Jaccard-index minimum of 0.75 as sufficiently robust and selected values of k > 30, which 

resulted in the identification of 11-12 clusters39. Differential expression analysis was performed 

using the method package from Shekhar et al (results are included in Supplementary Table 2) 

38.  

Data availability statement. The GEO accession number is: GSE90742. Additional data files 

will be made available upon reasonable request. SPRING plots (with and without removal of the 

G2/M cell cycle signature) are available for inspection at the following links: 

https://kleintools.hms.harvard.edu/tools/springViewer.html?cgi-bin/client_datasets/ARF2017_combined_nocycle 

https://kleintools.hms.harvard.edu/tools/springViewer.html?cgi-bin/client_datasets/ARF2017_combined 



 

REFERENCES - METHODS	

29 Foudi, A. et al. Analysis of histone 2B-GFP retention reveals slowly cycling 
hematopoietic stem cells. Nature biotechnology 27, 84-90, doi:10.1038/nbt.1517 (2009). 

30 Oguro, H., Ding, L. & Morrison, S. J. SLAM family markers resolve functionally distinct 
subpopulations of hematopoietic stem cells and multipotent progenitors. Cell stem cell 
13, 102-116, doi:10.1016/j.stem.2013.05.014 (2013). 

31 Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-
renewal during homeostasis and repair. Cell 135, 1118-1129, 
doi:10.1016/j.cell.2008.10.048 (2008). 

32 Harkey, M. A. et al. Multiarm high-throughput integration site detection: limitations of 
LAM-PCR technology and optimization for clonal analysis. Stem cells and development 
16, 381-392, doi:10.1089/scd.2007.0015 (2007). 

33 Wang, G. P. et al. DNA bar coding and pyrosequencing to analyze adverse events in 
therapeutic gene transfer. Nucleic acids research 36, e49, doi:10.1093/nar/gkn125 
(2008). 

34 Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. 
Nature protocols 12, 44-73, doi:10.1038/nprot.2016.154 (2017). 

35 Ilicic, T. et al. Classification of low quality cells from single-cell RNA-seq data. Genome 
biology 17, 29, doi:10.1186/s13059-016-0888-1 (2016). 

36 Weinreb, C., Wolock, S. & Klein, A. SPRING: a kinetic interface for visualizing high 
dimensional single-cell expression data. bioRxiv, doi:10.1101/090332 (2016). 

37 Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-
sequencing data reveals hidden subpopulations of cells. Nature biotechnology 33, 155-
160, doi:10.1038/nbt.3102 (2015). 

38 Shekhar, K. et al. Comprehensive Classification of Retinal Bipolar Neurons by Single-
Cell Transcriptomics. Cell 166, 1308-1323 e1330, doi:10.1016/j.cell.2016.07.054 (2016). 

39 Hennig, C. Cluster validation by measurement of clustering characteristics relevant to 
the user. arXiv:1703.09282 (2017). 

 
 
 
 

 

 

 

 



 

EXTENDED DATA  

Extended Data Fig. 1. TARIS. a, Illustration of the TARIS procedure. The procedure is 

described in detail in the Methods section of this manuscript.  

Extended Data Fig. 2. Evaluation of the TARIS method. a, Design for the detection limit 

experiment. Spike-ins of a known number of HEK293 cells carrying unique Tn integration tags 

was used in a mix of 10,000 DsRed+ peripheral blood cells from a freshly induced HSB mouse. 

b, Detection limit chart. Values represent the read number for each clone and for each number 

of input cells. Both axes are in log10 scale. Values represent the sum of two independent 

experiments. c, Comparison of the average read number value between TARIS and the 

Ligation-mediated PCR (LM-PCR) method. Values represent mean +/- SD of 5 different Tn tag 

clones. d, Reproducibility analysis in a non-whole genome amplified sample with high 

complexity (2x105 BM granulocytes 4 wk after pulse). e, Reproducibility in a whole-genome 

amplified sample with low complexity (863 LT-HSCs 4 wk after pulse). f, Venn diagram showing 

overlapping Tn tag reads between two TARIS replicates from the same sample high-complexity 

sample (2x105 BM monocytes at 4 wk post-induction). g, Venn diagram showing overlapping Tn 

tag reads between two TARIS replicates from the same low-complexity sample (863 LT-HSCs 

at 4 wk post-induction). h, Contamination analysis between samples from two different mice. 

The plot represents the read numbers of tags from Lin+ populations from mouse 1, and their 

read number values in Lin+ populations in mouse 2. High confidence tags are selected as those 

tags with more than 25 reads, and at least 10-times higher read count compared to any of the 

samples from a separate mouse.  

Extended Data Fig. 3. Analysis of residual HSB activity after doxycycline withdrawal. a, 

Experimental design. Residual HSB activity after Dox removal was assayed by transplantation 



into CD45.1 mice. Sub-lethally irradiated recipients were treated with Dox for 48h. Dox was 

removed 12h before transplantation. Ten million whole BM cells were transplanted and mice 

were allowed to recover for 2 weeks. As a positive control, mice were continuously treated with 

Dox until 48h after transplant. As a negative control, cells were transplanted into non-Dox 

treated mice. DsRed labelling was analysed as a proxy for HSB activity in Granulocytes, 

Erythroblasts, Monocytes and B cells.  b, FACS plots showing the negligible labelling of CD45.2 

M2/HSB/Tn cells in transplanted recipients 24h after Dox-removal.  

Extended Data Fig. 4. Additional representations and analyses of Lin+ tags. a, Lin+ clones 

of the second and third mice used for quantifications in Fig.1d-g. b, Scale-adjusted binary 

(presence/absence) representation of all detected Mk and Er tags in the experiments from 

Fig.1d-g. c, Relative quantification of scale-normalized clone sizes for each lineage, comparing 

unilineage vs. oligo/multilineage clones. Values are interquartile range and median from 3 

independent mice at 4 week and 8 week post-induction.  

Extended Data Fig. 5. Validation of My/Er and Mk-restricted tags. a, Three independent Tn 

tag libraries were prepared and sequenced from 2wk, 4wk and 8wk-chased mice. Reads from 

the three libraries were then pooled together for each lineage.  

Extended Data Fig. 6. Lineage fate of myeloid-progenitors. a, Two M2/HSB/Tn mice were 

induced and chased for 1 week, and then myeloid progenitors (GMP, MEP and CMP) and Lin+ 

cells were isolated from bone marrow and their Tn-tag content was analysed. Chart is a binary 

representation of all Lin+ tags overlapping with any myeloid progenitor tag ranked by lineage. b, 

Quantification of relative lineage contribution of GMPs, MEPs and CMPs as a fraction of 

lineage-specific/total lineage-overlapping clones for each MyP subset. Values are mean of the 

two analysed mice. c, An additional M2/HSB/Tn mouse was induced and chased for 3 weeks, 

and then processed as in (a). d, Quantification of relative lineage contribution of GMPs, MEPs 



and CMPs at 3 weeks post-labelling. 

Extended Data Fig. 7. Additional analyses of MPP clonal outcomes. a, Quantification of the 

percentage of MPP clones that produced any Lin+ progeny at different time points. Values are 

average +/- SD from 3 mice. b, Three independent Tn tag libraries were prepared and 

sequenced for all the populations from one bone marrow at 2, 4 and 8 wk post-labeling. Each 

column in the charts represent the combined tags detected in any of the three libraries for each 

population.  

Extended Data Fig. 8. Single cell heterogeneity of HSC/MPPs. a, SPRING plots showing 

selected differentially expressed markers. Scale represents amount of detected mRNA copies 

(normalized) of each marker gene. b, Enrichment score analysis for single cells in each FACS-

sorted population compared to previously obtained bulk transcriptional signatures of BM 

populations sorted using traditional markers (from the Immgen database).  

Extended Data Fig. 9. Differentially expressed markers for clusters C1, C2, C3, and Mk. a, 

FACS plots showing heterogeneity in expression of cluster markers within the analysed 

HSC/MPP subsets. b, FACS plots showing expression of different Mk-primed cluster markers 

(CD41, CD42 and CD9) within the LT-HSC gate. c, The table shows the expression value 

(nTrans) and percentage of expressing cells from each cluster (%Exp). The top 10 highest 

expressed genes that distinguish each cluster are shown. 

Extended Data Fig. 10. Additional data on clonal origin of Mk progenitors. a, Three 

independent Tn tag libraries were prepared and sequenced for LT-HSC, MPP, and the five Lin+ 

populations, from one mouse at 4 weeks. Each column represents the combined tags detected 

from 3 amplicon libraries prepared for each population, to facilitate visualization of the smallest 

clones. Tags are coloured by frequency in each lineage, and organized by rank. b, Origin of Mk. 

Alignment of all Mk clones which had detectable tags in HSC/MPPs from a mixed library 



combining 3 independent sequencing reactions. Tags are coloured by frequency in each lineage 

(except for Mk), and organized by rank. Arrows indicate tags verified by clone-specific PCR. c, 

Alignment of Tn tags from all Lin+ populations, LT-HSCs and MPPs collected from 30 wk 

chased-mice. Tags are coloured by frequency in each lineage, and organized by rank. d, 

Experimental design for testing in vitro myeloid and lymphoid potential from sorted LT-HSCs. e, 

In vitro myeloid potential of LT-HSCs. Alignment of donor Lin+ tags with Tn tags obtained from 

myeloid and lymphoid cells derived from donor LT-HSCs after 2 weeks in culture. f, Clonal 

output of CD41hi and CD41lo LT-HSCs at 4 weeks post labeling. g, Quantification of Mk lineage 

replacement by CD41hi vs. CD41lo LT-HSCs (measured as % of overlapping/total Mk reads) at 4 

weeks post labeling. Values are mean +/- s.e.m. of 3 independent mice. 

    

 


