843 research outputs found

    Optimizing Software Team Performance with Cultural Differences

    Get PDF
    Software development is primarily a team task that requires a high degree of coordination among team members. Prior research has indicated that the composition of team member traits such as personality and culture can influence the performance of software teams. However, this line of research does not give practical guidance on how to build teams with personnel constraints. Some research has built teams by starting with personality. However, cultural traits—which are also known to influence team performance—have not been examined in the same manner. This research, therefore, builds upon this stream by: 1) examining the effects of Hofstede’s latest six-dimensional model of national culture, 2) segmenting potential software team members into distinct cultural clusters, and 3) testing the outcomes of teams built upon homogeneous versus heterogeneous cultural compositions over time. Our results indicate that—consistent with prior research—homogenous team compositions are initially better for performance. However, this effect reverses over time, and ultimately heterogenous team compositions are superior

    The IS Core: An Integration of the Core IS Courses

    Get PDF
    This paper describes an innovative, integrated implementation of the core Information Systems courses. While the published IS curriculum provides standards on course content, it gives little direction on the implementation of the courses. At Brigham Young University, we have reengineered the traditional topics of analysis, database, design, development, networking, etc. into an integrated, 24-hour course block called the “IS Core”. Instead of students moving from class to class, professors now rotate through integrated subjects in a common classroom environment. The IS Core has allowed the department to increase the rigor and integration between subjects so students see the entire systems process and has provided opportunities for cross-topic assignments and integrated exercises. Finally, it has resulted in unintended, additional benefits like increased student culture and student ownership of the major

    Parametric Resonance in an Expanding Universe

    Get PDF
    Parametric resonance has been discussed as a mechanism for copious particle production following inflation. Here we present a simple and intuitive calculational method for estimating the efficiency of parametric amplification as a function of parameters. This is important for determining whether resonant amplification plays an important role in the reheating process. We find that significant amplification occurs only for a limited range of couplings and interactions.Comment: 18 pages, Latex, 4 figure

    Dairy Farm Business Summary: Western and Central Plateau Region 1997

    Full text link
    E.B. 98-09Dairy farm managers throughout New York State have been participating in Cornell Cooperative Extension's farm business summary and analysis program since the early 1950's. Managers of each participating farm business receive a comprehensive summary and analysis of their farm business. The information in this report represents averages of the data submitted from dairy farms in the Western and Central Plateau Region for 1997

    Quintessence and variation of the fine structure constant in the CMBR

    Get PDF
    We study dependence of the CMB temperature anisotropy spectrum on the value of the fine structure constant α\alpha and the equation of state of the dark energy component of the total density of the universe. We find that bounds imposed on the variation of α\alpha from the analysis of currently available CMB data sets can be significantly relaxed if one also allows for a change in the equation of state.Comment: 5 pages, 3 figures. Several references added and a few minor typos corrected in the revised versio

    Eastern Pacific Emitted Aerosol Cloud Experiment

    Get PDF
    Aerosol–cloud–radiation interactions are widely held to be the largest single source of uncertainty in climate model projections of future radiative forcing due to increasing anthropogenic emissions. The underlying causes of this uncertainty among modeled predictions of climate are the gaps in our fundamental understanding of cloud processes. There has been significant progress with both observations and models in addressing these important questions but quantifying them correctly is nontrivial, thus limiting our ability to represent them in global climate models. The Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) 2011 was a targeted aircraft campaign with embedded modeling studies, using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft and the research vessel Point Sur in July and August 2011 off the central coast of California, with a full payload of instruments to measure particle and cloud number, mass, composition, and water uptake distributions. EPEACE used three emitted particle sources to separate particle-induced feedbacks from dynamical variability, namely 1) shipboard smoke-generated particles with 0.05–1-ÎŒm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke), 2) combustion particles from container ships with 0.05–0.2-ÎŒm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components), and 3) aircraft-based milled salt particles with 3–5-ÎŒm diameters (which showed enhanced drizzle rates in some clouds). The aircraft observations were consistent with past large-eddy simulations of deeper clouds in ship tracks and aerosol– cloud parcel modeling of cloud drop number and composition, providing quantitative constraints on aerosol effects on warm-cloud microphysics

    Genome-Wide Association Study Identifies Two Novel Regions at 11p15.5-p13 and 1p31 with Major Impact on Acute-Phase Serum Amyloid A

    Get PDF
    Elevated levels of acute-phase serum amyloid A (A-SAA) cause amyloidosis and are a risk factor for atherosclerosis and its clinical complications, type 2 diabetes, as well as various malignancies. To investigate the genetic basis of A-SAA levels, we conducted the first genome-wide association study on baseline A-SAA concentrations in three population-based studies (KORA, TwinsUK, Sorbs) and one prospective case cohort study (LURIC), including a total of 4,212 participants of European descent, and identified two novel genetic susceptibility regions at 11p15.5-p13 and 1p31. The region at 11p15.5-p13 (rs4150642; p = 3.20×10−111) contains serum amyloid A1 (SAA1) and the adjacent general transcription factor 2 H1 (GTF2H1), Hermansky-Pudlak Syndrome 5 (HPS5), lactate dehydrogenase A (LDHA), and lactate dehydrogenase C (LDHC). This region explains 10.84% of the total variation of A-SAA levels in our data, which makes up 18.37% of the total estimated heritability. The second region encloses the leptin receptor (LEPR) gene at 1p31 (rs12753193; p = 1.22×10−11) and has been found to be associated with CRP and fibrinogen in previous studies. Our findings demonstrate a key role of the 11p15.5-p13 region in the regulation of baseline A-SAA levels and provide confirmative evidence of the importance of the 1p31 region for inflammatory processes and the close interplay between A-SAA, leptin, and other acute-phase proteins

    Examining the generalizability of research findings from archival data

    Get PDF
    This initiative examined systematically the extent to which a large set of archival research findings generalizes across contexts. We repeated the key analyses for 29 original strategic management effects in the same context (direct reproduction) as well as in 52 novel time periods and geographies; 45% of the reproductions returned results matching the original reports together with 55% of tests in different spans of years and 40% of tests in novel geographies. Some original findings were associated with multiple new tests. Reproducibility was the best predictor of generalizability—for the findings that proved directly reproducible, 84% emerged in other available time periods and 57% emerged in other geographies. Overall, only limited empirical evidence emerged for context sensitivity. In a forecasting survey, independent scientists were able to anticipate which effects would find support in tests in new samples

    SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems

    Get PDF
    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5 million massive galaxies and Lya forest spectra of 150,000 quasars, using the BAO feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z<0.7 and at z~2.5. SEGUE-2, which is now completed, measured medium-resolution (R=1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE will obtain high-resolution (R~30,000), high signal-to-noise (S/N>100 per resolution element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars, measuring separate abundances for ~15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. (Abridged)Comment: Revised to version published in The Astronomical Journa
    • 

    corecore