150 research outputs found

    A NOS1AP gene variant is associated with a paradoxical increase of the QT-interval shortening effect of digoxin

    Get PDF
    Digoxin is characterized by a small therapeutic window and a QT-interval shortening effect. Moreover, it has been shown that the genetic variants of the nitric oxide synthase-1 adaptor protein (NOS1AP) gene are associated with QT-interval prolongation. We investigated whether the rs10494366 variant of the NOS1AP gene decreases the QT-interval shortening effect of digoxin in patients using this drug. We included 10,057 individuals from the prospective population-based cohort of the Rotterdam Study during a median of 12.2 (interquartile range (IQR) 6.7-18.1) years of follow-up. At study entry, the mean age was 64 years and almost 59% of participants were women. A total of 23,179 ECGs were longitudinally recorded, of which 334 ECGs were from 249 individuals on digoxin therapy. The linear mixed model analysis was used to estimate the effect of the rs10494366 variant on the association between digoxin use and QT-interval duration, adjusted for age, sex, RR interval, diabetes, heart failure, and history of myocardial infarction. In non-users of digoxin, the GG genotype was associated with a significant 6.5 ms [95% confidence interval (CI) 5.5; 7.5] longer QT-interval duration than the TT variant. In current digoxin users, however, the GG variant was associated with a significantly -23.9 [95%CI -29.5; -18.5] ms shorter mean QT-interval duration than in those with the TT variant with -15.9 [95%CI -18.7; -13.1]. This reduction was strongest in the high digoxin dose category [≥0.250 mg/day] with the GG genotype group, with -40.8 [95%CI -52.5; -29.2] ms changes compared to non-users. Our study suggests that the minor homozygous GG genotype group of the NOS1AP gene rs10494366 variant is associated with a paradoxical increase of the QT-interval shortening effect of digoxin in a population of European ancestry

    Orthostatic hypotension and novel blood pressure-associated gene variants: Genetics of Postural Hemodynamics (GPH) Consortium

    Get PDF
    Aims: Orthostatic hypotension (OH), an independent predictor of mortality and cardiovascular events, strongly correlates with hypertension. Recent genome-wide studies have identified new loci influencing blood pressure (BP) in populations, but their impact on OH remains unknown. Methods and Results: A total of 38 970 men and women of European ancestry from five population-based cohorts were included, of whom 2656 (6.8%) met the diagnostic criteria for OH (systolic/diastolic BP drop ≥20/10 mmHg within 3 min of standing). Thirty-one recently discovered BP-associated single nucleotide polymorphisms (SNPs) were examined using an additive genetic model and the major allele as referent. Relations between OH, orthostatic systolic BP response, and genetic variants were assessed by inverse variance-weighted meta-analysis. We found Bonferroni adjusted (P < 0.0016) significant evidence for association between OH and the EBF1 locus (rs11953630, per-minor-allele odds ratio, 95% confidence interval: 0.90, 0.85–0.96; P = 0.001), and nominal evidence (P < 0.05) for CYP17A1 (rs11191548: 0.85, 0.75–0.95; P = 0.005), and NPR3-C5orf23 (rs1173771: 0.92, 0.87–0.98; P= 0.009) loci. Among subjects not taking BP-lowering drugs, three SNPs within the NPPA/NPPB locus were nominally associated with increased risk of OH (rs17367504: 1.13, 1.02–1.24; P = 0.02, rs198358: 1.10, 1.01–1.20; P = 0.04, and rs5068: 1.22, 1.04–1.43; P = 0.01). Moreover, an ADM variant was nominally associated with continuous orthostatic systolic BP response in the adjusted model (P= 0.04). Conclusion: The overall association between common gene variants in BP loci and OH was generally weak and the direction of effect inconsistent with resting BP findings. These results suggest that OH and resting BP share few genetic components

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Orthostatic hypotension and novel blood pressure-associated gene variants: Genetics of Postural Hemodynamics (GPH) Consortium

    Get PDF
    Aims Orthostatic hypotension (OH), an independent predictor of mortality and cardiovascular events, strongly correlates with hypertension. Recent genome-wide studies have identified new loci influencing blood pressure (BP) in populations, but their impact on OH remains unknown. Methods and resultsA total of 38 970 men and women of European ancestry from five population-based cohorts were included, of whom 2656 (6.8) met the diagnostic criteria for OH (systolic/diastolic BP drop <20/10 mmHg within 3 min of standing). Thirty-one recently discovered BP-associated single nucleotide polymorphisms (SNPs) were examined using an additive genetic model and the major allele as referent. Relations between OH, orthostatic systolic BP response, and genetic variants were assessed by inverse variance-weighted meta-analysis. We found Bonferroni adjusted (P < 0.0016) significant evidence for association between OH and the EBF1 locus (rs11953630, per-minor-allele odds ratio, 95 confidence interval: 0.90, 0.850.96; P=0.001), and nominal evidence (P < 0.05) for CYP17A1 (rs11191548: 0.85, 0.750.95; P=0.005), and NPR3-C5orf23 (rs1173771: 0.92, 0.870.98; P=0.009) loci. Among subjects not taking BP-lowering drugs, three SNPs within the NPPA/NPPB locus were nominally associated with increased risk of OH (rs17367504: 1.13, 1.021.24; P=0.02, rs198358: 1.10, 1.011.20; P=0.04, and rs5068: 1.22, 1.041.43; P=0.01). Moreover, an ADM variant was nominally associated with continuous orthostatic systolic BP response in the adjusted model (P=0.04). ConclusionThe overall association between common gene variants in BP loci and OH was generally weak and the direction of effect inconsistent with resting BP findings. These results suggest that OH and resting BP share few genetic components

    The Diagnostic Potential of Fe Lines Applied to Protostellar Jets

    Get PDF
    We investigate the diagnostic capabilities of iron lines for tracing the physical conditions of shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 3000-25000 \uc5, X-shooter spectra of two jets driven by the pre-main sequence stars ESO-H\u3b1 574 and Par-Lup 3-4. Both spectra are very rich in [Fe II] lines over the whole spectral range; in addition, lines from [Fe III] are detected in the ESO-H\u3b1 574 spectrum. Non-local thermal equilibrium codes solving the equations of the statistical equilibrium along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density and fractional ionization. An estimate of the iron gas-phase abundance is provided by comparing the iron lines emissivity with that of neutral oxygen at 6300 \uc5. The [Fe II] line analysis indicates that the jet driven by ESO-H\u3b1 574 is, on average, colder (T e 3c 9000 K), less dense (n e 3c 2 7 104 cm-3), and more ionized (x e 3c 0.7) than the Par-Lup 3-4 jet (T e 3c 13,000 K, n e 3c 6 7 104 cm-3, x e < 0.4), even if the existence of a higher density component (n e 3c 2 7 105 cm-3) is probed by the [Fe III] and [Fe II] ultra-violet lines. The physical conditions derived from the iron lines are compared with shock models suggesting that the shock at work in ESO-H\u3b1 574 is faster and likely more energetic than the Par-Lup 3-4 shock. This latter feature is confirmed by the high percentage of gas-phase iron measured in ESO-H\u3b1 574 (50%-60% of its solar abundance in comparison with less than 30% in Par-Lup 3-4), which testifies that the ESO-H\u3b1 574 shock is powerful enough to partially destroy the dust present inside the jet. This work demonstrates that a multiline Fe analysis can be effectively used to probe the excitation and ionization conditions of the gas in a jet without any assumption on ionic abundances. The main limitation on the diagnostics resides in the large uncertainties of the atomic data, which, however, can be overcome through a statistical approach involving many line

    Identification of a Sudden Cardiac Death Susceptibility Locus at 2q24.2 through Genome-Wide Association in European Ancestry Individuals

    Get PDF
    Sudden cardiac death (SCD) continues to be one of the leading causes of mortality worldwide, with an annual incidence estimated at 250,000–300,000 in the United States and with the vast majority occurring in the setting of coronary disease. We performed a genome-wide association meta-analysis in 1,283 SCD cases and >20,000 control individuals of European ancestry from 5 studies, with follow-up genotyping in up to 3,119 SCD cases and 11,146 controls from 11 European ancestry studies, and identify the BAZ2B locus as associated with SCD (P = 1.8×10−10). The risk allele, while ancestral, has a frequency of ∼1.4%, suggesting strong negative selection and increases risk for SCD by 1.92–fold per allele (95% CI 1.57–2.34). We also tested the role of 49 SNPs previously implicated in modulating electrocardiographic traits (QRS, QT, and RR intervals). Consistent with epidemiological studies showing increased risk of SCD with prolonged QRS/QT intervals, the interval-prolonging alleles are in aggregate associated with increased risk for SCD (P = 0.006)

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Digital Quantification of Human Eye Color Highlights Genetic Association of Three New Loci

    Get PDF
    Previous studies have successfully identified genetic variants in several genes associated with human iris (eye) color; however, they all used simplified categorical trait information. Here, we quantified continuous eye color variation into hue and saturation values using high-resolution digital full-eye photographs and conducted a genome-wide association study on 5,951 Dutch Europeans from the Rotterdam Study. Three new regions, 1q42.3, 17q25.3, and 21q22.13, were highlighted meeting the criterion for genome-wide statistically significant association. The latter two loci were replicated in 2,261 individuals from the UK and in 1,282 from Australia. The LYST gene at 1q42.3 and the DSCR9 gene at 21q22.13 serve as promising functional candidates. A model for predicting quantitative eye colors explained over 50% of trait variance in the Rotterdam Study. Over all our data exemplify that fine phenotyping is a useful strategy for finding genes involved in human complex traits

    Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure

    Get PDF
    Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinant
    corecore