9,343 research outputs found

    Modelling the variability of 1ES1218+30.4

    Full text link
    The blazar 1ES1218+30.4 has been previously detected by the VERITAS and MAGIC telescopes in the very high energies. The new detection of VERITAS from December 2008 to April 2009 proves that 1ES1218+30.4 is not static, but shows short-time variability. We show that the time variability may be explained in the context of a self-consistent synchrotron-self Compton model, while the long time observation do not necessarily require a time-resolved treatment. The kinetic equations for electrons and photons in a plasma blob are solved numerically including Fermi acceleration for electrons as well as synchrotron radiation and Compton scattering. The light curve observed by VERITAS can be reproduced in our model by assuming a changing level of electron injection compared to the constant state of 1ES1218+30.4. The multiwavelength behaviour during an outburst becomes comprehensible by the model. The long time measurements of VERITAS are still explainable via a constant emission in the SSC context, but the short outbursts each require a time-resolved treatment.Comment: 4 pages, 3 figures; accepted in A&A; AA/2010/1429

    The post-outburst photometric behaviour of V838 Mon

    Get PDF
    The unusual eruptive variable discovered in Monoceros in 2002 January underwent dramatic photometric and spectroscopic changes in the months prior to its 2002 June-August conjunction with the Sun. Optical and infrared (IR) photometry obtained at the South African Astronomical Observatory (SAAO) between 2002 January and June (JD 2452280-440) is presented here in an analysis of the star's post-outburst behaviour. The light curve indicated 3 eruptions took place in 2002 January, February and March. SAAO echelle spectra obtained in the week prior to the March maximum indicated the ejection of a new shell of material. JHKL photometry obtained during 2002 April showed the development of an IR excess due to the formation of a dust shell. The shell appears to be largely responsible for the rapid fade in the optical flux during 2002 April-May (Delta V > 6 mag within 3 weeks). Blueing of the optical colours during the decline is likely due either to the revealing of an emission line region surrounding V838 Mon, or the unveiling of the progenitor or a spatially-close early-type star.Comment: 7 pages, 7 figures - accepted for MNRA

    SSC radiation in BL Lac sources, the end of the tether

    Full text link
    The synchrotron-self Compton (SSC) radiation process is widely held to provide a close representation of the double peaked spectral energy distributions from BL Lac Objects (BL Lacs), which are marked by non-thermal beamed radiations, highly variable on timescales of days or less. Their outbursts in the gamma ray relative to the optical/X rays might be surmised to be enhanced in BL Lacs as these photons are upscattered via the inverse Compton (IC) process. From the observed correlations among the spectral parameters during optical/X-ray variations we aim at predicting corresponding correlations in the gamma-ray band, and the actual relations between the gamma-ray and the X-ray variability consistent with the SSC emission process. We start from the homogeneous single-zone SSC source model, with log-parabolic energies distributions of emitting electron as required by the X-ray data of many sources. We find relations among spectral parameters of the IC radiation in both the Thomson (for Low energy BL Lacs) and the Klein-Nishina regimes (mainly for High energy BL Lacs) and we compute how variability is driven by a smooth increase of key source parameters, primarily the root mean square electron energy. The single component SSC source model in the Thomson regime turns out to be adequate for many LBL sources. However, the simple model meets its limits with the fast/strong flares recently reported for a few sources in the TeV range; these require sudden accelerations of emitting electrons in a second source component.Comment: 12 pages, 2 tables, 8 figure

    Broad-band nonthermal emission from molecular clouds illuminated by cosmic rays from nearby supernova remnants

    Full text link
    Molecular clouds are expected to emit non-thermal radiation due to cosmic ray interactions in the dense magnetized gas. Such emission is amplified if a cloud is located close to an accelerator of cosmic rays and if energetic particles can leave the accelerator site and diffusively reach the cloud. We consider here the situation in which a molecular cloud is located in the proximity of a supernova remnant which is efficiently accelerating cosmic rays and gradually releasing them in the interstellar medium. We calculate the multiwavelength spectrum from radio to gamma rays which is emerging from the cloud as the result of cosmic ray interactions. The total energy output is dominated by the gamma ray emission, which can exceed the emission in other bands by an order of magnitude or more. This suggests that some of the unidentified TeV sources detected so far, with no obvious or very weak counterparts in other wavelengths, might be in fact associated with clouds illuminated by cosmic rays coming from a nearby source. Moreover, under certain conditions, the gamma ray spectrum exhibit a concave shape, being steep at low energies and hard at high energies. This fact might have important implications for the studies of the spectral compatibility of GeV and TeV gamma ray sources.Comment: 13 pages, 6 figures, submitted to MNRA

    Supersonic water masers in 30 Doradus

    Get PDF
    We report on extremely high velocity molecular gas, up to -80 km/s relative to the ambient medium, in the giant star-formation complex 30 Doradus in the Large Magellanic Cloud (LMC), as observed in new 22 GHz H2O maser emission spectra obtained with the Mopra radio telescope. The masers may trace the velocities of protostars, and the observed morphology and kinematics indicate that current star formation occurs near the interfaces of colliding stellar-wind blown bubbles. The large space velocities of the protostars and associated gas could result in efficient mixing of the LMC. A similar mechanism in the Milky Way could seed the galactic halo with relatively young stars and gas.Comment: 11 pages plus 1 PS and 1 EPS figure, uses AASTeX preprint style; accepted for publication in Astrophysical Journal Letter

    High-energy gamma-ray emission from the inner jet of LS I+61 303: the hadronic contribution revisited

    Get PDF
    LS I+61 303 has been detected by the Cherenkov telescope MAGIC at very high energies, presenting a variable flux along the orbital motion with a maximum clearly separated from the periastron passage. In the light of the new observational constraints, we revisit the discussion of the production of high-energy gamma rays from particle interactions in the inner jet of this system. The hadronic contribution could represent a major fraction of the TeV emission detected from this source. The spectral energy distribution resulting from p-p interactions is recalculated. Opacity effects introduced by the photon fields of the primary star and the stellar decretion disk are shown to be essential in shaping the high-energy gamma-ray light curve at energies close to 200 GeV. We also present results of Monte Carlo simulations of the electromagnetic cascades developed very close to the periastron passage. We conclude that a hadronic microquasar model for the gamma-ray emission in LS I +61 303 can reproduce the main features of its observed high-energy gamma-ray flux.Comment: 6 pages. Sligth improvements made. Accepted version by Astrophysics and Space Scienc

    Homeomorphic Embedding for Online Termination of Symbolic Methods

    No full text
    Well-quasi orders in general, and homeomorphic embedding in particular, have gained popularity to ensure the termination of techniques for program analysis, specialisation, transformation, and verification. In this paper we survey and discuss this use of homeomorphic embedding and clarify the advantages of such an approach over one using well-founded orders. We also discuss various extensions of the homeomorphic embedding relation. We conclude with a study of homeomorphic embedding in the context of metaprogramming, presenting some new (positive and negative) results and open problems
    corecore