2,048 research outputs found

    The impact of cellular networks on disease comorbidity

    Get PDF
    The impact of disease-causing defects is often not limited to the products of a mutated gene but, thanks to interactions between the molecular components, may also affect other cellular functions, resulting in potential comorbidity effects. By combining information on cellular interactions, disease--gene associations, and population-level disease patterns extracted from Medicare data, we find statistically significant correlations between the underlying structure of cellular networks and disease comorbidity patterns in the human population. Our results indicate that such a combination of population-level data and cellular network information could help build novel hypotheses about disease mechanisms

    A Reo model of Software Defined Networks

    Get PDF
    Reo is a compositional coordination language for component connectors with a formal semantics based on automata. In this paper, we propose a formal model of software defined networks (SDNs) based on Reo where declarative constructs comprising of basic Reo primitives compose to specify descriptive models of both data and control planes of SDNs. We first describe the model of an SDN switch which can be compactly represented as a single state constraint automaton with a memory storing its flow table. A full network can then be compositionally constructed by composing the switches with basic communication channels. The reactive and proactive behaviour of the controllers in the control plane of an SDN can also be modelled by Reo connectors, which can compose the connectors representing data plane. The resulting model is suitable for testing, simulation, visualization, verification, and ultimately compilation into SDN switch code using the standard tools already available for Reo

    Evolutionary diversification and characterization of the eubacterial gene family encoding DXR type II, an alternative isoprenoid biosynthetic enzyme

    Get PDF
    [EN] Background: Isoprenoids constitute a vast family of natural compounds performing diverse and essential functions in all domains of life. In most eubacteria, isoprenoids are synthesized through the methylerythritol 4-phosphate (MEP) pathway. The production of MEP is usually catalyzed by deoxyxylulose 5-phosphate reductoisomerase (DXR-I) but a few organisms use an alternative DXR-like enzyme (DXR-II). Results: Searches through 1498 bacterial complete proteomes detected 130 sequences with similarity to DXR-II. Phylogenetic analysis identified three well-resolved clades: the DXR-II family (clustering 53 sequences including eleven experimentally verified as functional enzymes able to produce MEP), and two previously uncharacterized NAD(P)-dependent oxidoreductase families (designated DLO1 and DLO2 for DXR-II-like oxidoreductases 1 and 2). Our analyses identified amino acid changes critical for the acquisition of DXR-II biochemical function through type-I functional divergence, two of them mapping onto key residues for DXR-II activity. DXR-II showed a markedly discontinuous distribution, which was verified at several levels: taxonomic (being predominantly found in Alphaproteobacteria and Firmicutes), metabolic (being mostly found in bacteria with complete functional MEP pathways with or without DXR-I), and phenotypic (as no biological/phenotypic property was found to be preferentially distributed among DXR-II-containing strains, apart from pathogenicity in animals). By performing a thorough comparative sequence analysis of GC content, 3: 1 dinucleotide frequencies, codon usage and codon adaptation indexes (CAI) between DXR-II sequences and their corresponding genomes, we examined the role of horizontal gene transfer (HGT), as opposed to an scenario of massive gene loss, in the evolutionary origin and diversification of the DXR-II subfamily in bacteria. Conclusions: Our analyses support a single origin of the DXR-II family through functional divergence, in which constitutes an exceptional model of acquisition and maintenance of redundant gene functions between nonhomologous genes as a result of convergent evolution. Subsequently, although old episodic events of HGT could not be excluded, the results supported a prevalent role of gene loss in explaining the distribution of DXR-II in specific pathogenic eubacteria. Our results highlight the importance of the functional characterization of evolutionary shortcuts in isoprenoid biosynthesis for screening specific antibacterial drugs and for regulating the production of isoprenoids of human interest.We thank all our laboratory members for stimulating discussions and suggestions. We thank Derek Taylor and Mario A Fares for critical reading of the manuscript and helpful comments. Financial support for this research was provided by the Spanish Ministerio de Ciencia e Innovacion (grants BIO2011-23680 to MRC and BFU2011-25658 to FJS) and Generalitat de Catalunya (2009SGR-26 and XRB) to MRC.Carretero Paulet, L.; Lipska, A.; Perez-Gil, J.; Sangari, J.; Albert, V.; Rodriguez-Concepción, M. (2013). Evolutionary diversification and characterization of the eubacterial gene family encoding DXR type II, an alternative isoprenoid biosynthetic enzyme. BMC Evolutionary Biology. 13(180):1-18. https://doi.org/10.1186/1471-2148-13-180S1181318

    A viscoelastic deadly fluid in carnivorous pitcher plants

    Get PDF
    Background : The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. Methodology/Principal Findings : Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. Conclusions/Significance : This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera) flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control

    IACT observations of gamma-ray bursts: prospects for the Cherenkov Telescope Array

    Full text link
    Gamma rays at rest frame energies as high as 90 GeV have been reported from gamma-ray bursts (GRBs) by the Fermi Large Area Telescope (LAT). There is considerable hope that a confirmed GRB detection will be possible with the upcoming Cherenkov Telescope Array (CTA), which will have a larger effective area and better low-energy sensitivity than current-generation imaging atmospheric Cherenkov telescopes (IACTs). To estimate the likelihood of such a detection, we have developed a phenomenological model for GRB emission between 1 GeV and 1 TeV that is motivated by the high-energy GRB detections of Fermi-LAT, and allows us to extrapolate the statistics of GRBs seen by lower energy instruments such as the Swift-BAT and BATSE on the Compton Gamma-ray Observatory. We show a number of statistics for detected GRBs, and describe how the detectability of GRBs with CTA could vary based on a number of parameters, such as the typical observation delay between the burst onset and the start of ground observations. We also consider the possibility of using GBM on Fermi as a finder of GRBs for rapid ground follow-up. While the uncertainty of GBM localization is problematic, the small field-of-view for IACTs can potentially be overcome by scanning over the GBM error region. Overall, our results indicate that CTA should be able to detect one GRB every 20 to 30 months with our baseline instrument model, assuming consistently rapid pursuit of GRB alerts, and provided that spectral breaks below 100 GeV are not a common feature of the bright GRB population. With a more optimistic instrument model, the detection rate can be as high as 1 to 2 GRBs per year.Comment: 28 pages, 24 figures, 4 tables, submitted to Experimental Astronom

    Recent trends in chronic disease, impairment and disability among older adults in the United States

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To examine concurrent prevalence trends of chronic disease, impairment and disability among older adults.</p> <p>Methods</p> <p>We analyzed the 1998, 2004 and 2008 waves of the Health and Retirement Study, a nationally representative survey of older adults in the United States, and included 31,568 community dwelling adults aged 65 and over. Measurements include: prevalence of chronic diseases including hypertension, heart disease, stroke, diabetes, cancer, chronic lung disease and arthritis; prevalence of impairments, including impairments of cognition, vision, hearing, mobility, and urinary incontinence; prevalence of disability, including activities of daily living (ADLs) and instrumental activities of daily living (IADLs).</p> <p>Results</p> <p>The proportion of older adults reporting no chronic disease decreased from 13.1% (95% Confidence Interval [CI], 12.4%-13.8%) in 1998 to 7.8% (95% CI, 7.2%-8.4%) in 2008, whereas the proportion reporting 1 or more chronic diseases increased from 86.9% (95% CI, 86.2%-89.6%) in 1998 to 92.2% (95% CI, 91.6%-92.8%) in 2008. In addition, the proportion reporting 4 or more diseases increased from 11.7% (95% CI, 11.0%-12.4%) in 1998 to 17.4% (95% CI, 16.6%-18.2%) in 2008. The proportion of older adults reporting no impairments was 47.3% (95% CI, 46.3%-48.4%) in 1998 and 44.4% (95% CI, 43.3%-45.5%) in 2008, whereas the proportion of respondents reporting 3 or more was 7.2% (95% CI, 6.7%-7.7%) in 1998 and 7.3% (95% CI, 6.8%-7.9%) in 2008. The proportion of older adults reporting any ADL or IADL disability was 26.3% (95% CI, 25.4%-27.2%) in 1998 and 25.4% (95% CI, 24.5%-26.3%) in 2008.</p> <p>Conclusions</p> <p>Multiple chronic disease is increasingly prevalent among older U.S. adults, whereas the prevalence of impairment and disability, while substantial, remain stable.</p

    Environmental differences between sites control the diet and nutrition of the carnivorous plant Drosera rotundifolia

    Get PDF
    Background and aims: Carnivorous plants are sensitive to small changes in resource availability, but few previous studies have examined how differences in nutrient and prey availability affect investment in and the benefit of carnivory. We studied the impact of site-level differences in resource availability on ecophysiological traits of carnivory for Drosera rotundifolia L. Methods: We measured prey availability, investment in carnivory (leaf stickiness), prey capture and diet of plants growing in two bogs with differences in N deposition and plant available N: Cors Fochno (0.62 g m−2 yr.−1, 353 μg l−1), Whixall Moss (1.37 g m−2 yr.−1, 1505 μg l−1). The total N amount per plant and the contributions of prey/root N to the plants’ N budget were calculated using a single isotope natural abundance method. Results: Plants at Whixall Moss invested less in carnivory, were less likely to capture prey, and were less reliant on prey-derived N (25.5% compared with 49.4%). Actual prey capture did not differ between sites. Diet composition differed – Cors Fochno plants captured 62% greater proportions of Diptera. Conclusions: Our results show site-level differences in plant diet and nutrition consistent with differences in resource availability. Similarity in actual prey capture may be explained by differences in leaf stickiness and prey abundance

    Intravenous apoptotic spleen cell infusion induces a TGF-beta-dependent regulatory T-cell expansion.: Apoptosis and regulatory T cells

    No full text
    International audienceApoptotic leukocytes are endowed with immunomodulatory properties that can be used to enhance hematopoietic engraftment and prevent graft-versus-host disease (GvHD). This apoptotic cell-induced tolerogenic effect is mediated by host macrophages and not recipient dendritic cells or donor phagocytes present in the bone marrow graft as evidenced by selective cell depletion and trafficking experiments. Furthermore, apoptotic cell infusion is associated with TGF-beta-dependent donor CD4+CD25+ T-cell expansion. Such cells have a regulatory phenotype (CD62L(high) and intracellular CTLA-4+), express high levels of forkhead-box transcription factor p3 (Foxp3) mRNA and exert ex vivo suppressive activity through a cell-to-cell contact mechanism. In vivo CD25 depletion after apoptotic cell infusion prevents the apoptotic cell-induced beneficial effects on engraftment and GvHD occurrence. This highlights the role of regulatory T cells in the tolerogenic effect of apoptotic cell infusion. This novel association between apoptosis and regulatory T-cell expansion may also contribute to preventing deleterious autoimmune responses during normal turnover
    corecore