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Abstract. Reo is a compositional coordination language for component
connectors with a formal semantics based on automata. In this paper,
we propose a formal model of software defined networks (SDNs) based
on Reo where declarative constructs comprising of basic Reo primitives
compose to specify descriptive models of both data and control planes of
SDNs. We first describe the model of an SDN switch which can be com-
pactly represented as a single state constraint automaton with a memory
storing its flow table. A full network can then be compositionally con-
structed by composing the switches with basic communication channels.
The reactive and proactive behaviour of the controllers in the control
plane of an SDN can also be modelled by Reo connectors, which can
compose the connectors representing data plane. The resulting model is
suitable for testing, simulation, visualization, verification, and ultimately
compilation into SDN switch code using the standard tools already avail-
able for Reo.
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1 Introduction

Since the concept of software defined network (SDN) was introduced in 2006 [9]
it has become increasingly popular in both academia and industry as a new
architecture for operating and managing computer networks via the OpenFlow
protocol [19]. In traditional networks, the control plane (where the packet for-
warding strategy is set up) is tightly coupled with the data plane (where the
actual packet forwarding happens) and distributed in a multitude of hardware
devices. Because no entity has a global view of the network, and the size and
complexity of today’s networks are very large, it has become extremely compli-
cated to program network-wide decisions for end-to-end policies and to verify
their compliance with global objectives.

Different from traditional network, SDN offers a network architecture that
decouples data from its routing control, and places network intelligence and
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states in a logically centralized routing control entity, the so called controllers.
Controllers operate independently from network switches which contain pro-
grammable forwarding tables that are set up and managed by the controllers.
Since controllers can be programmed, SDN enables the application of formal
methods to prove the correctness of computer networks. In the recent years sev-
eral formal models of SDN (e.g. [2,15,16]) have been proposed in order to test
or check that a network behave correctly.

In this paper we present a formal model of SDN based on Reo [3], a graphical
language for compositional construction of interaction protocols, manifested as
connectors. A connector consist of several typed channel and nodes, arranged in
a graph of edges and vertices. Every edge in this graph represents a channel of
a specific type and every vertex represents a node. The type of a channel deter-
mines its data-flow behaviour. Nodes regulate data-flow by non-deterministically
selecting data items available through their incoming channel ends and replicat-
ing them through their outgoing channel ends. Nodes with both incoming and
outgoing channel ends are called mixed nodes. Nodes with no incoming channel
end are called source nodes, and those with no outgoing channel end are called
sink nodes. Source and sink nodes collectively comprise the boundary nodes of
a connector, forming the interface that regulates its communication with the
environment. Every connector can be described by functional constraints that
relate the timing and the contents of the data-flows at its interface [7]. Reo was
originally introduced as a coordination language. Since its introduction, how-
ever, Reo has become a domain-specific language for compositional specification
of protocols based on an interaction-centric model of concurrency [4,14].

Using Reo we regard components in an SDN as constraints imposed on the
interactions of parties engaged in the processing of network packets. Starting
with a small set of simple constraints, we obtain a declarative descriptions of
switches in the data plane as well as controllers in the control plane. Composition
of these components is supported through other simpler connectors which give
a global description of the topology of the network.

The formal semantics of Reo is based on automata [7] and as such it supports
formal analysis, testing and verification as well as distributed automatic code
generation [14]. For a more compact representation and for enabling constraints
depending on stored data we consider basic channels with memory, and as such
we present a variation of the original semantics of Reo to support constraints on
stored and to be stored data. The result is a compact finite state model for SDN
particularly suited for formal verification using techniques as in [17]. While we are
only considering functional modelling in this paper, extensions for capturing the
notions of time, quality of service, resources, as well as probabilistic behaviour
can be captured by similar extension of the underlying Reo model [6].

In order to scale up to handle large networks, our resulting SDN model is
compositional in the sense that the meaning of the entire computer network is
obtained by composing that of the individual models of the switches, network
topology, and controllers. The resulting model is independent from the possibly
infinite sequences of packets traversing the network.
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Recent interest in the application of formal methods to software defined net-
works started with VeriCon [8], an interactive verification system based on first
order logic to model admissible network topologies and network invariants. Sim-
ilar to our model is a finite state machine model of SDN introduced in [25]. In
this work model checking is possible via a translation to binary decision dia-
grams, under a similar assumption to ours: controllers are described as finite
state machines. Another relevant work on automated verification is [22]. Our
approach however is based on a declarative descriptions of controllers, switches,
and network topology as a Reo circuits, whose automatic composition yields a
finite automaton.

Different from our declarative approach, [1] proposes an actor-based mod-
elling to verify concurrent features of SDN via the ABS toolsuite. The use of
automata in our work instead of actors make it easier to specify real time and
other quantitative properties of SDN. We do not explore this direction in this
paper, leaving it for future work. Variation of regular expressions have been very
successful in modelling network programming languages [2,21,23]. In particular
NetKAT offers a sound and complete algebraic reasoning systems with an inter-
esting coalgebraic decision procedure. However NetKAT models only a stateless
snapshot of the data plane traversed by a single packet. It does not support
update of flow tables nor routing of multiple packets. TLA+ [18] has also been
used to model the behaviour of SDN but in a very restrictive manner, allowing
only a single switch [16]. Formal models are used not only to verify properties
of an SDN such as consistency of flow tables, violation of safety policies, or for-
warding loops, but also for finding flaws in security protocols using CSP and the
model checker PAT [24].

This paper proceed as follows. In Sect. 2 we give a brief introduction to the
main concepts of software defined networks, while in Sect. 3 we introduce Reo
and give a new automata based semantics using memory cells for storing data.
This model is used in Sect. 4 where we present a Reo circuit for the data plane
and the control plane of an SDN. We conclude with an example showing the
semantic difference between two controllers.

2 A Primer on Software Defined Networks

Network management includes many different tasks that, traditionally, have been
realized through manufacturer-specific low-level languages for the configuration
of hardware network devices, e.g., switches and routers. The primary function
of a network management task is to ensure transport of packets, and entails
two planes: the control plane for making routing decisions and the data plane
concerned with packet forwarding. In traditional networks, the control plane is
coupled with the data plane on each hardware device. As such the control plane
is highly distributed, with no global view of the network, making it impossi-
ble to program network-wide decisions and verify their compliance with global
specifications.
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SDN offers a network architecture that simplifies the design and deployment
of network management tasks: the control plane is a logically centralized con-
troller that gathers information from the data plane and provides a global view
to applications running on top of the controller. These applications make packet
routing decisions based on the global view and distribute the decisions to the
data plane via the controller using the OpenFlow protocol [19].

Each switch in the data plane consists of a number of ports where packets
are received or forwarded. Further, each switch is connected to at least one
controller, from which it may receive or to which it may send messages. The
basic messages forwarded from switch to switch are packets. A packet consists
of a finite set of fields, grouped in header information and pure data, as the two
packets in the example below show, where the header of each packet contains
the information about the tcp and ethernet destination address of the packet:

tcp dst:22, eth dst:11 data: d1 tcp dst:23, eth dst:11 data: d2

Forwarding of packets is implemented in each switch through a flow table,
a memory store consisting of an ordered set of pairs (b, a). Here b is a Boolean
condition on the packet fields (the so called matching criteria) and a is the
corresponding action to be executed on the matching packet. The order of the
matching-action pairs gives a priority on the application of the matching condi-
tion. There are basically three types of actions: forwarding a packet to one or
more ports of the switch, dropping a packet, and updating a field of a packet
with some value. For example, the leftmost packet above matches the first rule
of table below and it is forwarded to the output ports 3 and 4. The rightmost
packet however matches only the last rule and it is forwarded to port 1 after its
field tcp dst is updated to 22.

Matching condition Action

tcp dst:22 Forward[3, 4]

tcp dst:23, eth dst:12 drop

true tcp dst := 22; Forward[1]

Controllers and switches communicate through messages. A PktIn message
is a packet sent from a switch to a controller, typically to be processed there or to
trigger an update of the flow tables. A PktOut message sent from the controller
to a switch consists of a packet together with a flow table action to be executed
by the switch. This way a packet need not pass through the flow table but is,
for example, immediately forwarded to other switches.

The flow table of a switch is updated by FlowMod messages, another type
of message from a controller to a switch. Each FlowMod message consists of a
ModType t (Add, Remove, Modify), a matching condition b and an action a. If t
= Add then the pair (b, a) is added on top of the table (higher priority), while
if t = Modify then the first pair in the flow table (b′, a′) with b implying b′ is



A Reo Model of Software Defined Networks 73

substituted with the pair (b, a). In remaining case when with t = Remove the
first pair in the flow table (b′, a′) with b implying b′ is removed from the table.
In this case the action a does not play any role and therefore can be considered
empty. Those three types of messages plus dedicated packets to communicate
data allow controllers to gather information about the network and manage it.

3 Reo and Constraint Automata

Reo is a coordination language for compositional construction of component con-
nectors [3]. The emphasis in Reo is on connectors, their behaviour and composi-
tion out of simple channels. Reo can also be used to define an interaction proto-
col as a connector, a graph-like structure that enables (a)synchronous data flow
along its edges. Each edge is called a channel and it specifies constraints on the
flows of data at its ends. A channel end is either a source end through which the
channel accepts data, or a sink end through which the channel offers data. Mul-
tiple channel ends coincident at a vertex of the connector together form a node.
Nodes have predefined ‘merge-replicate’ behaviour: a node repeatedly accepts a
datum from one of its coincident sink ends, chosen non-deterministically, and
offers that datum through all of its coincident source ends.

3.1 Constraint Automata

Constraint automata are a formalism to describe the “behaviour” of Reo chan-
nels and their composition as connectors [7]. Constraint automata can be thought
of as conceptual generalizations of finite state automata where data constraints
influence applicable state transitions.

We assume a finite set D of data ranged over by d, a finite set P of ports
ranged over by p, q (note that ports in Reo are distinct from ports in SDN
switches), and a finite set M of memory cells ranged over by m. Further, let F
be a set of function symbols and P a set of predicate symbols. Each predicate
symbol and each function symbol comes with an arity, the number of arguments
it expects. A term is defined as follows:

t:: = d | p | m | m• | f(t, ..., t)

Terms are used in constraints defined by the following predicate formulas:

φ:: = � | p = t | m = t | m• = t | P (t, ..., t) | φ ∧ φ | ¬φ

The constraint p = t denotes the equality between the value passing through the
port p, and the value obtained by evaluating the term t; m = t is the equality
between the value stored in the memory m before evaluating the constraint and
the value denoted by t; m• = t is equality between the value stored in the memory
m immediately after the evaluation of the constraint and the value denoted by
t. The others are just the usual constraints.
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In order to define the satisfaction of constraints, we assume the existence of
a function f̂ : Dn → D for each f ∈ F of arity n, and a subset P̂ ⊆ D

m for
each predicate symbol P ∈ P of arity m. For fixed sets of input ports I, output
ports O and hidden ports H, the evaluation of constraint is defined by using the
function α:I ∪ O ∪M → D⊥, and an environment η:H → D⊥ assigning values to
hidden ports. α is used for the visible components of a Reo connector. Here α(A)
represents the value passing though the port A unless α(A) =⊥ that denotes the
absence of flow of data though port A. Similarly α(m) denotes the value stored
in the memory cell m.

We denote by At the set of all atoms α. Note that m• is not a part of an
atom, because it refer to the value of m after the evaluation of a transition.
Therefore we need pairs of atoms, one for the current values stored in memory
cells, and another for storing the side effect of evaluation, i.e., the value of a
memory cell after the evaluation. Evaluations of guards is defined inductively as
follow:

α1α2 |=η �
α1α2 |=η p = t iff α1(p) = �t�η

α1α2

α1α2 |=η m = t iff α1(m) = �t�η
α1α2

α1α2 |=η m• = t iff α2(m) = �t�η
α1α2

α1α2 |=η P (t1, ..., tn) iff 〈�t1�η
α1α2

, ..., �tn�η
α1α2

〉 ∈ P̂
α1α2 |=η φ1 ∧ φ2 iff α1α2 |=η φ1 and α1α2 |=η φ2

α1α2 |=η ¬φ iff α1α2 �|=η φ

Finally, we define the evaluation of a guard without hidden ports as follows:

α1α2 |= φ if and only if there is η such that α1α2 |=η φ.

Here �t�η
α1α2

denotes the value of the term t and is defined inductively by:

�d�η
α1α2

= d

�p�η
α1α2

=
{

α1(p) , if p ∈ I ∪ O
η(p) , if p ∈ H

�m�η
α1α2

= α1(m)
�m•�η

α1α2
= α2(m)

�f(t1, ..., tn)�η
α1α2

= P̂ (�t1�η
α1α2

, ..., �tn�η
α1α2

)

We are now ready for the definition of constraint automata with memory
cells describing operationally the behaviour of a Reo connector.

Definition 1. A constraint automaton is a tuple (Q, I,O,H,M,−→, q0) where
Q is a finite set of states with q0 ∈ Q the initial state, I,O,H ⊆ P are sets of
ports known by the automaton, M ⊆ M is the set of memory cells, and −→ is a
transition relation with q

N,φ−−→ q′ denoting a transition from q to q′ synchronizing
a set of ports N ⊆ I ∪ O ∪ H under the data constraint φ. We assume that the
ports appearing in φ are a subset of N and the memory cells occurring in φ are
a subset of M .
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An execution of a constraint automaton is described by means of infinite
strings [12] in Atω. An infinite string α · w is an execution from the state q,

denoted by α · w ∈ E(q) if and only if there is a transition q
N,φ−−→ q′ such that

the following three conditions hold:

1. ∀p ∈ I ∪ O, p �∈ N iff α(p) =⊥;
2. w = α′ · w′ and αα′ |= φ;
3. w ∈ E(q′)

By the above definition a constraint of a transition q
N,φ−−→ q′ is evaluated in an

execution α · w starting from q with respect to its first two atoms. Furthermore,
only the ports in N fire, meaning that a value passes through them as recorded
by α, and the rest of the string w is an execution of the target state q′.

Consider the following constraint automaton:

q0start q1

{A?}, m• = A

{B!}, m = B

{A?, B!, C}, m• = C ∧ m = B ∧ C = A

Here “?” and “!” are syntactic means for indicating which ports belong to
I and O, respectively. The unmarked ports belong to H. An example of an
execution of the above automaton starting from q0 is the infinite string:

[A = 1, B =⊥,m = 22] · [A = 3, B = 1,m = 1] · [A = 5, B = 3,m = 3]·
[A =⊥, B = 5,m = 5] · [A = 7, B =⊥,m = 33] · . . .

Note that the value of the memory of the second element of the string is equal
to the value at port A of the first element, and the value of port B of the second
element. Similarly for the value of A in the second element and the value of B
and the memory m in the third element.

The above automaton has the same executions from the initial state as the
following automaton without hidden ports.

q0start q1

{A?}, m• = A

{B!}, m = B

{A?, B!}, m• = A ∧ m = B

While in general it is not always possible to remove all hidden ports without
modifying the set of executions, for simplicity and when there is no problem,
in the sequel we will simplify a constraint automaton by removing hidden ports
obtaining an automaton with the same structure (states and transitions) and
the same executions from its initial state.
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The language of a constraint automaton consists of the projection with
respect to the ports of all executions starting from the initial state. A language
represents the behaviour of the automaton as visible from the environment.
Therefore, only input and output ports are visible, but not hidden ports or
memory cells. For example, the language accepted by the above two constraint
automata is the same and it includes the following infinite string:

[A = 1, B =⊥] · [A = 3, B = 1] · [A = 5, B = 3] · [A =⊥, B = 5] · . . . .

3.2 Basic Channels and More Complex Connectors

Next, we briefly introduce the constraint automata and the their graphical rep-
resentation for all basic Reo channels [3,17] we use in this paper.

A B

The synchronous channel accepts data from
its input port A, and it passes them syn-
chronously to its output port B.

{A?, B!},
A = B

A B

The synchronous drain has two input ports A
and B, from which it accepts any data, but
only when the two ports can be synchronized.
The data received as input is not important,
only the ports’ synchronization matters.

{A?, B?}

A

B

C

The non-deterministic merger receives data
from either A or B and sends them to the
sink node C synchronously. If data is avail-
able from both A and B at the same time,
one of them is chosen non-deterministically.

{A?, C!},
C = A

{B?, C!},
C = B

A

B

C

The replicator receives data from A and repli-
cates them to both sink nodes B and C.

{A?, B!, C!},
B = A ∧
C = A

A B
•
m

The FIFO1 channel receives data from the
input port A if the internal buffer m is empty.
The data is stored in the buffer, which can
only contain at most one data item. When
m is full its content flows to the output port
B and it becomes empty. The behavior of a
similar channel with dot inside is represented
by the automaton with the other state as the
starting state.

{A?}, A = m•

{B!}, B = m

A B

f The transformer channel applies a user-
defined function f to a data item consumed
from its source end A, and synchronously
offers f(A) through its channel end B.

{A?, B!},
B = f(A)
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A B

P

The pattern of filter channel P ⊆ Data spec-
ifies the type of data items that can be trans-
mitted through the channel. Any value d ∈ P
is accepted through its source end if its sink
end can simultaneously dispense d; all data
items d /∈ P are always accepted through the
source end but are immediately lost.

{A?, B!},
B = A ∧ P (A)

{A?}, ¬P (A)

A

C
B

The PairMerger accepts two data items d1
and d2 through the source ends A and B,
merges them and synchronously offers the
pair 〈d1, d2〉 through its sink end C.

{A?, B?, C!},
C = 〈A,B〉

A B

τ

The variable can accept a data item d
through source end A, update its memory
τ , synchronously offer the data stored in τ
through sink end B if B fires; also it can
directly synchronously offer τ through B if
B fires but A doesn’t fire, τ remains in the
buffer.

{A?, B!}, τ = B ∧
τ• = A

{A?},
τ• = A

{B!}, τ = B ∧
τ• = τ

Note that the PairMerger uses a binary function symbol 〈−,−〉 interpreted
as the usual pairing. In all automata in the table, we assume that the ports
known by each automaton are those used in the channels.

A Reo circuit is built out of some basic channels via the join operation which
is performed by joining common ports of the channels. On the automata level,
the join operation is realized by the following product construction.

Definition 2. The product of the two constraint automata A1 = (Q1, I1, O1,
H1, M1, −→1, q1) and A2 = (Q2, I2, O2, H2, M2, −→2, q2) with disjoint sets
of states Q1 and Q2, and disjoint sets of memory cells M1 and M2 is:

A1 �� A2 = (Q, I,O,H,M1 ∪ M2,−→, 〈q1, q2〉)
where Q = Q1 × Q2, I = (I1 − O2) ∪ (I2 − O1), O = (O1 − I2) ∪ (O2 − I1),
H = (I1 ∩ O2) ∪ (I2 ∩ O1) ∪ H1 ∪ H2, and −→ is defined by the following rules:

q1
N1,φ1−−−−→1 q′

1 and q2
N2,φ2−−−−→2 q′

2 andPrt1 ∩ N2 = Prt2 ∩ N1

〈q1, q2〉 N1∪N2, φ1∧φ2−−−−−−−−−→ 〈q′
1, q

′
2〉

Here Prt1 = I1 ∪ O1 ∪ H1, and Prt2 = I2 ∪ O2 ∪ H2.

Figure 1 shows an example of composition of a non-deterministic merger (on
the left) on ports {A?, B?, C!} with a synchronous channel (second automata
from the left) acting on port {C?,D!}. The result is a new automaton with
C as hidden port (third automaton from the left), which however is language
equivalent to the automaton of a non-deterministic merger (the rightmost one)
on ports {A?, B?,D!}.
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Note that the port C is a hidden port in the resulting automaton because
it is an output port of one channel and input of the other. It is not hard to see
that the join operation is associative and commutative.

As another example, in Fig. 2 we introduce the circuit of a three-port
sequencer and its corresponding constraint automaton [11]. This three-port-
sequencer regulates the flow of data from ports A, B and C, in a sequential
order. Similar sequencers can be defined for any number of ports.

{A?, C!},
C = A

{B?, C!},
C = B

��

{C?, D!},
C = D

=

{A?, C, D!},
C = A ∧ C = D

{B?, C, D!},
C = B ∧ C = D

≡

{A?, D!},
A = D

{B?, D!},
B = D

Fig. 1. The example of automata conjunction

BA C

• •

•

(a) Circuit

1start

2

3

{A} {B}

{C}
(b) Constraint automaton

Fig. 2. A three-port sequencer

4 A Reo Model of Software Defined Networks

In this section, we present an SDN model based on the Reo language. First, we
describe the switches of the data plane as Reo circuits, and we translate it into
its corresponding constraint automaton. Afterwards, we describe two examples
of controllers managing a simple network with two switches. The goal is to send
packets from one host to another. We conclude by combining the automata of
these two layers with a network topology.

4.1 Data Plane

The basic data type we use is that of a packet. We see a packet as a record
π : Fields → Data assigning fields from a finite set of Fields to data in Data.
We denote a packet by π = [f0 = d0, f1 = d1, ..., fn = dn], and use the notation
π.f to denote the value of the field f of the packet π. The set Fields is assumed
to include a field IP t for storing the identity of the input port of the switch
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where the packet is received, OPt for the output port of the switch where the
packet is forwarded.

Figure 3 introduces the Reo circuit representing a switch with an interface
consisting of input ports {P0, P1, ..., Pn} and output ports {Q0, Q1, ..., Qm}. Here
both n and m are greater than or equal to 0 so that a switch has always at least
two ports: P0 and Q0. Port P0 is used to receive messages from the controller
supervising the switch, whereas port Q0 is meant for sending packets to the
controller. All other ports are connected to other switches or open to the envi-
ronment for communication with hosts. The input ports receive packets, and the
output ports send packets.

P0

P1

Pn

A CB D E

H
F

R0

Q0

R1

Rm

Q1

Qm

GFlowMod
PktOut

AddIpt1

AddIptn

Msg

FM

Mtc

Upd

Sel0

Cut

Sel1

Selm

Cut1

Cutmτ

Fig. 3. Reo circuit of one switch

We can describe the behaviour of the circuit representing a switch by means
of three scenarios.

1. The first one is when a packet π is received from a host or another switch. In
this case the input port is Pi for some 1 ≤ i ≤ n, The transformer AddIpt i
of the channel connected to Pi assign π.IP t to i and outputs to A a triple
(FlowMsg, π, ∅). The first component of the triple is the tag FlowMsg indi-
cating that π is an ordinary network packet with no side effect on the flow
table. The last component is the subset of output ports of the switch where
the packet needs to be forwarded.

The above triple is paired with the current flow table stored in τ and received
by the filters FM and Msg. These filters check the first component of the
triple. In our case only the filter Msg will succeed, and will pass the triple
(FlowMsg, π, ∅) together with the table τ to the transformer Mtc via node
D. This transformer matches the packet π against the table τ , executes the
corresponding field assignment modifying π into a new packet π′ and outputs
the pair (π′, F ) to node E. Here the set F contains all output ports where
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the packet π′ needs to be forwarded, according to the action of the matching
pair in the flow table τ .

The filters Seli regulate the forwarding by outputting the pair (π′, F ) to node
Ri if i ∈ F . Note that the same pair may be duplicated to many nodes, and
in case F = ∅ it will be dropped. Also, If 0 ∈ F then the packet is forwarded
to the controller. From the node Ri the transformer Cuti receiving as input
the pair (π′, F ) will output the packet π′, removing the information about
the forwarding ports.

2. The second situation is when a PktOut message from the controller is received
at the input port P0. A PktOut message is a triple 〈FlowMsg, π, F 〉 consist-
ing of a tag FlowMsg as in the previous case, a packet pi and a set of output
ports F where π needs to be forwarded. Only the filter PktOut lets this triple
flow to the node G, where a transformer receives it, removes the tag, and out-
puts the pair (π, F ) to node E. The selection and forwarding of π to each
port in F is as before.

3. The third and last situation is when a FlowMod message from the controller
is received at the input port P0. Also in this case it consist of a triple 〈t, B,A〉,
but unlike the previous cases, this message is meant to update the table stored
in τ . More specifically, B is a Boolean condition on Fields matching the pair of
τ to be updated, and A is the action for field updating and packet forwarding.
The tag t can be either add, remove or modify to add (B,A) on top of table
τ , remove the first pair (b, a) of τ with b implying B, or to modify the first
pair (b, a) of τ with b implying B into the new pair (b, A). Note that in the
case of t = remove, the action A does not play any role.

Of the two filters with input at P0 only the filter FlowMod will succeed, so
the triple 〈t, B,A〉 can be paired with the current flow table τ and reach node
C. Here the filter Msg will fail but FM will succeed, passing all 〈t, B,A〉
and τ to the transformer Upd. This transformer will update the table τ as
described in the triple 〈t, B,A〉, and will output a new table τ ′. The latter is
stored as the new current table by the variable channel with input node F .

While the Reo circuit of a switch may look complicated, its actual constraint
automaton is rather simple. It consists of only one state (because all channels
used have one single state) and three types of transitions (see Fig. 4).

{P0?},C0

{Pi?} ∪ {Qj !|j ∈ F},C2
{P0?} ∪ {Qj !|j ∈ F},C1

Fig. 4. Constraint automaton of a switch
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The conditions C0, C1 and C2 are:

1. C0: P0 = 〈t, B,A〉 ∧ t �= Msg ∧ τ• = Upd(〈τ, P0〉);
2. C1: P0 = 〈Msg, π, F 〉 ∧ ∧

j∈F Qj = π;
3. C2: Mtc(〈τ, 〈Msg, π[i/Ipt], ∅〉〉) = 〈π′, F 〉 ∧ τ• = τ ∧ ∧

j∈F Qj = π′.

Condition C0 specifies when a FlowMod message is received by a switch
so that the flow table is updated. Transitions labelled by condition C1 or C2

are dependent on the subset of output ports F received as input from P0 or
assigned after a matching action. This means that there is a concrete transition
for each possible subset of the output ports, but only one will eventually be
chosen. Condition C1 concerns FlowMsg messages received by a controller, while
condition C2 defines the handling of a packet received from a host or another
switch.

If we assume that in a switch the number of input ports is n, and that the
number of output ports is m, then the resulting constraint automata will have
one state and 1 + 2m + (n − 1) ∗ 2m transitions.

Each switch in the data plane can be considered as a Reo connector inter-
acting with others only via its input and output ports, while all other nodes
and memory cells of the components are hidden. For example, while too large to
depict here, the constraint automaton of the data plane composed of two simple
switches connected by a synchronous channel as described in Fig. 5 consists of
one state, two memory cells (one for each switch flow table) and 26 transitions,
which can be generated using automated tools [5].

P0 Q0 P ′
0Q′

0

P1 Q2

Q1 P2
Switch 1 Switch 2

Fig. 5. Data plane

O1 I O2

Controller

P0 Q0 P ′
0Q′

0

P1 Q2

Q1 P2
Switch 1 Switch 2

Fig. 6. A simple example

4.2 Control Plane and the Whole SDN Model

The SDN control plane contains a set of controllers. Each controller behaves as a
reactive system, responding to PktIn messages received from switches by sending
either PktOut or FlowMod messages. We assume controllers to be specified as Reo
circuits, and thus with a behaviour described by means of constraint automata.
Input ports and output ports represent the connection of a controller with the
switches under its control. Figure 6 shows a simple example of a controller with
two switches. A controller need not know the operational details of any of the
switches that it controls (e.g., their automata); its concern consists of deciding
when to update the flow table of a switch, and what modification constitutes
that update. For instance, it may decide to modify the flow table of a switch
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in reaction to the switch receiving (and escalating) a packet for which it has no
matching condition.

For example, the controller described in Fig. 7 guarantees a flow of messages
from the host connected to port P1 to the host connected to port Q2. It updates
the flow table of a switch every time a new packet is received that does not
match any condition of the table. In the second controller shows in Fig. 8, we see
a similar specification of a controller flowing a packet from P1 to Q2, but each
time it updates switches apart.

We combine constraint automata of controllers and switches together to get a
complete model of an SDN. Because the rate of forwarding by a switch is different
from the rate of processing by a controller, we put a Queue channel between
output ports of each switch and input ports of the controller (like channels
{Q0, I} and {Q′

0, I} in Fig. 6), a synchronous channel between input ports of each
switch and output ports of the controller (like channels {O1, P0} and {O2, P

′
0}).

Here are the description of Queue.

I

A

A2

B

C

D

B2

C2

D2

O1

E FSequencer

G

H

M

O2

E2 F2Sequencer

S1

S2

FlowMod

FlowMod

•
FIFO

•
FIFO

PktOut

PktOut

FlowMod

Fig. 7. Reo circuit of controller 1

I

A

A2

B

C

D

B2

C2

D2

O1

E FSequencer

O2

E2 F2Sequencer

S1

S2

FlowMod

FlowMod

•
FIFO

•
FIFO

PktOut

PktOut

Fig. 8. Reo circuit of controller 2
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A B
• ...

q
•

The Queue channel behaves as a FIFO1,
but it has an unbounded internal buffer. As
such, data can always be received from the
input port A and stored in the buffer. If the
buffer is non empty then the first element
received by A flows from the buffer to the
output port B.

{A}, q• = A · q

{B}, q = q• · B

While the two models guarantee packets to flow from one host to another,
they have different semantics and therefore they are language distinguishable.
The two cases have different behaviours because in the first case when the con-
troller receive a PktIn message, it sends a FlowMod message to switch one and
another FlowMod to switch two, so that the packet π can pass the two switches
directly. But in the second case, every time the controller receives a PktIn mes-
sage, it just sends a FlowMod message to the current switch, so π can only pass
the current switch.

5 Conclusion

In this paper we presented a Reo model of SDN, based on a novel semantics for
constraint automata with memory, recently studied in [13]. The difference is in
a neater treatment of the values in the memory before and after the execution
of a transition. The model is stateful, and allows concurrency at the level of
controllers but also at the level of the packets. The model can immediately be
used for verification of quantitative and qualitative properties of SDN, such as
consistency of flow tables, violation of safety policies, or forwarding loops. In
the future, we plan to verify these properties by using tools like ReoLive [10], or
mCRL2 [17], which are part of the Reo framework [20] and can directly generate
executable code for the switches. Another line of research easily supported by
our model is the development of simulation and visualization tools for packets
flowing into the network.
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