66 research outputs found

    Automated Fault Detection in the Arabian Basin

    Full text link
    In recent years, there has been a rapid development of the computer-aided interpretation of seismic data to reduce the otherwise intensive manual labor. A variety of seed detection algorithms for horizon and fault identification are integrated into popular seismic software packages. Recently, there has been an increasing focus on using neural networks for fully automatic faults detection without manually seeding each fault. These networks are usually trained with synthetic fault data sets. These data sets can be used across multiple seismic data sets; however, they are not as accurate as real seismic data, particularly in structurally complex regions associated with several generations of faults. The approach taken here is to combine the accuracy of manual fault identification in certain parts of the data set with a convolutional neural network that can then sweep through the entire data set to identify faults. We have implemented our method using 3D seismic data acquired from the Arabian Basin in Saudi Arabia covering an area of 1051 km2. The network is trained, validated, and tested with samples that included a seismic cube and fault images that are labeled manually corresponding to the seismic cube. The model successfully identified faults with an accuracy of 96% and an error rate of 0.12 on the training data set. To achieve a robust model, we further enhanced the prediction results using postprocessing by linking discontinued segments of the same fault line, thus reducing the number of detected faults. The postprocessing improved the prediction results from the test data set by 77.5%. In addition, we introduced an efficient framework to correlate the predictions and the ground truth by measuring their average distance value. Furthermore, tests using this approach also were conducted on the F3 Netherlands survey with complex fault geometries and find promising results. As a result, fault detection and diagnosis were achieved efficiently with structures similar to the trained data set

    Glucose-6 Phosphate Dehydrogenase Deficiency in terms of hemolysis indicators and management

    Get PDF
    Background: Glucose-6 Phosphate Dehydrogenase (G6PD) Deficiency is one of the commonest inherited enzyme abnormalities in humans, caused by many mutations that reduce the stability of the enzyme and its level as red cells progress in age. Objectives: To determine the useful hematologic indicators of hemolysis, observe an early detection of G6PD enzyme deficiency (if any), and the available therapeutic measures. Patients and Methods: 123 patients with G6PD deficiency and hemolysis after exposure to fava beans whom visited AL-Elwiya Pediatric Teaching Hospital from the 1st of February 2016 till 31st of May 2016 were entered this study retrospectively. Hemolysis laboratory indicators were observed. Management supportive measures were put in consideration also. Results: We found that 10-20% levels of hematocrit and normochromic normocytic anemia were the most frequent on presentation, while a range of 15.1-20% of reticulocyte counts was the most common with lower rates in females group. Hyperbilirubinemia was seen with nil patients had abnormal renal function tests. About three quarters (76.4%) of the total number of involved cases had glucose-6-phosphate dehydrogenase (G6PD) deficiency. Only 4 patients required no blood transfusion, 102 patients (82.9%) needed transfusion once, and the rest 17 (13.8%) had more than one blood transfusion. Most of cases (91.1%) recovered within the first 3 days. However; all cases were recovered by the fourth day of admission. Conclusion: Hemoglobin and blood morphology with hyperbilirubinemia were useful hematologic indicators of hemolytic process, while blood transfusion was the most used therapeutic measure, and recovery was expected within 2-3 days

    Obstacles of Administrative Creativity Among the Principals of Public Schools in Amman City from their Point of View

    Get PDF
    The aim of this study is to identify the obstacles of administrative creativity among the principals of public schools in Amman City from their point of view. With that, the descriptive survey methodology was adopted. The sample of the study consisted of (105) male and female principals selected randomly. To achieve the objective of the study, a 30-item questionnaire distributed over (3) areas was formatted.The results of the study showed that the obstacles of administrative creativity among the principals of public schools in Amman City from their point of view for various fields were at a medium degree, where the field of environmental obstacles ranked first, followed by the field of organizational obstacles in the second place, followed by the field of personal obstacles in the third and last rank.The results showed that there were statistically significant differences for both sex variable in favor of males and experience variable in favor of those with more than ten years of experience.In the light of the researcher's findings: Work to link social and cultural institutions in the community in order to unite efforts to contribute to raising awareness of community members of the importance of creativity and innovation in school work, and organize programs and training courses to develop creativity skills. Promote positive communication at all levels to facilitate proposals for the development and improvement of performance, and the need to provide integrated administrative staff in each school to reduce school workload and provide an opportunity for creativity and innovation. Keywords: Administrative Creativity, Obstacles, Principals, Amman City. DOI: 10.7176/JEP/10-36-04 Publication date: December 31st 201

    Machine Learning Based Classification of Resting-State fMRI Features Exemplified by Metabolic State (Hunger/Satiety)

    Get PDF
    ObjectiveResting-state functional magnetic resonance imaging (rs-fMRI) has become an essential measure to investigate the human brain’s spontaneous activity and intrinsic functional connectivity. Several studies including our own previous work have shown that the brain controls the regulation of energy expenditure and food intake behavior. Accordingly, we expected different metabolic states to influence connectivity and activity patterns in neuronal networks.MethodsThe influence of hunger and satiety on rs-fMRI was investigated using three connectivity models (local connectivity, global connectivity and amplitude rs-fMRI signals). After extracting the connectivity parameters of 90 brain regions for each model, we used sequential forward floating selection strategy in conjunction with a linear support vector machine classifier and permutation tests to reveal which connectivity model differentiates best between metabolic states (hunger vs. satiety).ResultsWe found that the amplitude of rs-fMRI signals is slightly more precise than local and global connectivity models in order to detect resting brain changes during hunger and satiety with a classification accuracy of 81%.ConclusionThe amplitude of rs-fMRI signals serves as a suitable basis for machine learning based classification of brain activity. This opens up the possibility to apply this combination of algorithms to similar research questions, such as the characterization of brain states (e.g., sleep stages) or disease conditions (e.g., Alzheimer’s disease, minimal cognitive impairment)

    Impact of Hunger, Satiety, and Oral Glucose on the Association Between Insulin and Resting-State Human Brain Activity

    Get PDF
    To study the interplay of metabolic state (hungry vs. satiated) and glucose administration (including hormonal modulation) on brain function, resting-state functional magnetic resonance imaging (rs-fMRI) and blood samples were obtained in 24 healthy normal-weight men in a repeated measurement design. Participants were measured twice: once after a 36 h fast (except water) and once under satiation (three meals/day for 36 h). During each session, rs-fMRI and hormone concentrations were recorded before and after a 75 g oral dose of glucose. We calculated the amplitude map from blood-oxygen-level-dependent (BOLD) signals by using the fractional amplitude of low-frequency fluctuation (fALFF) approach for each volunteer per condition. Using multiple linear regression analysis (MLRA) the interdependence of brain activity, plasma insulin and blood glucose was investigated. We observed a modulatory impact of fasting state on intrinsic brain activity in the posterior cingulate cortex (PCC). Strikingly, differences in plasma insulin levels between hunger and satiety states after glucose administration at the time of the scan were negatively related to brain activity in the posterior insula and superior frontal gyrus (SFG), while plasma glucose levels were positively associated with activity changes in the fusiform gyrus. Furthermore, we could show that changes in plasma insulin enhanced the connectivity between the posterior insula and SFG. Our results indicate that hormonal signals like insulin alleviate an acute hemostatic energy deficit by modifying the homeostatic and frontal circuitry of the human brain

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    • 

    corecore