32 research outputs found

    A classification scheme for fluvial–aeolian system interaction in desert-margin settings

    Get PDF
    This study examines 130 case examples from 60 desert regions to propose a generalised framework to account for the diverse types of interaction known to exist between active aeolian and fluvial depositional systems at modern dune-field margins. Results demonstrate the significance of aeolian and fluvial system type, orientation of aeolian versus fluvial landforms, distribution of open versus closed interdune corridors, and fluvial flow processes in controlling the distance and type of penetration of fluvial systems into aeolian dune fields. Ten distinct types of fluvial–aeolian interaction are recognised: fluvial incursions aligned parallel to trend of linear chains of aeolian dune forms; fluvial incursions oriented perpendicular trend of aeolian dunes; bifurcation of fluvial flow between isolated aeolian dune forms; through-going fluvial channel networks that cross entire aeolian dune fields; flooding of dune fields due to regionally elevated water-table levels associated with fluvial floods; fluvial incursions emanating from a single point source into dune fields; incursions emanating from multiple sheet sources; cessation of the encroachment of entire aeolian dune fields by fluvial systems; termination of fluvial channel networks in aeolian dune fields; long-lived versus short-lived modes of fluvial incursion. Quantitative relationships describing spatial rates of change of desert-margin landforms are presented. The physical boundaries between geomorphic systems are dynamic: assemblages of surface landforms may change gradationally or abruptly over short spatial and temporal scales. Generalised models for the classification of types of interaction have application to the interpretation of ancient preserved successions, especially those known only from the subsurface

    Sedimentology and stratigraphic architecture of a fluvial to shallow-marine succession: The Jurassic Dhruma Formation, Saudi Arabia

    Get PDF
    The interaction of fluvial, tidal, and wave processes in coastal and paralic environments gives rise to sedimentary successions with highly varied styles of facies architecture; these are determined by the morphology and evolutionary behavior of the range of coastal sub-environments, which may be difficult to diagnose in subsurface sedimentary successions with limited well control. This study presents depositional models to account for stratigraphic complexity in a subsurface fluvial to shallow-marine succession, the Middle Jurassic Dhruma Formation, Saudi Arabia. The study achieves the following: i) it examines and demonstrates sedimentary relationships between various fluvial, nearshore, and shallow-marine deposits, ii) it develops depositional models to account for the stratigraphic complexity inherent in fluvial to shallow-marine successions, and iii) it documents the sedimentology and the stratigraphic evolutionary patterns of the lower Dhruma Formation in the studied area of Saudi Arabia. The dataset comprises facies descriptions of 570 m of core from 14 wells, 77 representative core thin sections, 14 gamma-ray logs, and FMI image logs from 4 wells. These data are integrated with quantitative information from > 50 analogous systems from a wide range of modern and ancient settings, stored in a relational database. Stratigraphic correlations reveal the internal anatomy of the succession. Facies associations are representative of fluvial channels, intertidal flats, pedogenically modified supratidal flats or floodplains, river-influenced tidal bars, weakly storm-affected shoreface and offshore-transition zones, storm-dominated delta-front and prodelta settings, and an open-marine carbonate-dominated shelf. These sub-environments interacted in a complex way through space and time. The vertical succession of the studied interval records an overall transition from coastal-plain deposits at the base to marine deposits at the top. As such, the succession records a long-term transgressive, deepening-upward trend. However, this general trend is punctuated by repeated progradational events whereby coastal sand bodies of fluvial, wave, and tidal origin prograded basinward during stillstands to fill bays along a coastline. The nature of juxtaposition of neighboring sub-environments has resulted in a sedimentary record that is highly complex compared to that generated by morphologically simple shoreface systems that accumulate more regularly ordered stratal packages

    Sedimentary cycles in a Mesoproterozoic aeolian erg-margin succession: Mangabeira Formation, Espinhaço Supergroup, Brazil

    Get PDF
    Aeolian systems were abundant and widespread in the early Proterozoic, post-2.2 Ga. However, the majority of aeolian successions of such great age are intensely deformed and are preserved only in a fragmentary state meaning that, hitherto, few attempts have been made to apply a sequence stratigraphic approach to determine mechanisms of aeolian construction, accumulation and preservation in such systems. The Mangabeira Formation is a well preserved Mesoproterozoic erg successions covering part of the São Francisco Craton, northeastern Brazil. The lower unit of the Mangabeira Formation (~ 500 m thick) comprises aeolian deposits of dune, interdune, and sand-sheet origin, as well as some of waterlain origin. These deposits are organized into vertically stacked depositional cycles, each 6 to 20 m thick, and characterized by aeolian sandsheet and waterlain deposits succeeded by aeolian dune and interdune deposits indicative of a drying-upward trend. Aeolian cross-strata exhibit a mean dip direction to the north. Each of these cycles likely arose in response to climatic oscillation from relatively humid to arid conditions, possibly related to orbital forcing. The lower unit of the Mangabeira Formation comprises up to 14 erg sequences. The accumulation and preservation of each was determined by the relative rate of water-table rise and the availability of sand for aeolian transport, both of which changed through time, resulting in the preservation of a succession of repeated drying-upward cycles

    Meandering rivers in modern desert basins: Implications for channel planform controls and prevegetation rivers

    Get PDF
    The influence of biotic processes in controlling the development of meandering channels in fluvial systems is controversial. The majority of the depositional history of the Earth's continents was devoid of significant biogeomorphic interactions, particularly those between vegetation and sedimentation processes. The prevailing perspective has been that prevegetation meandering channels rarely developed and that rivers with braided planforms dominated. However, recently acquired data demonstrate that meandering channel planforms are more widely preserved in prevegetation fluvial successions than previously thought. Understanding the role of prevailing fluvial dynamics in non- and poorly vegetated environments must rely on actualistic models derived from presently active rivers developed in sedimentary basins subject to desert-climate settings, the sparsest vegetated regions experiencing active sedimentation on Earth. These systems have fluvial depositional settings that most closely resemble those present in prevegetation (and extra-terrestrial) environments. Here, we present an analysis based on satellite imagery which reveals that rivers with meandering channel planforms are common in modern sedimentary basins in desert settings. Morphometric analysis of meandering fluvial channel behaviour, where vegetation is absent or highly restricted, shows that modern sparsely and non-vegetated meandering rivers occur across a range of slope gradients and basin settings, and possess a broad range of channel and meander-belt dimensions. The importance of meandering rivers in modern desert settings suggests that their abundance is likely underestimated in the prevegetation rock record, and models for recognition of their deposits need to be improved

    Remote sensing of spatial variability in aeolian dune and interdune morphology in the Rub' Al-Khali, Saudi Arabia

    Get PDF
    The Rub' Al-Khali aeolian sand sea of south eastern Saudi Arabia - also known as the Empty Quarter - covers an area of 660,000 km and is one of the largest sandy deserts in the world. The region is covered by the latest generation of public-release satellite imagery, which reveal spatially diverse dune patterns characterized by a varied range of dune types, the morphology, scale and orientation of which change systematically from central to marginal dune-field areas where non-aeolian sub-environments become dominant within the overall desert setting. Analysis of geomorphic relationships between dune and interdune sub-environments within 4 regions of the Rub' Al-Khali reveals predictable spatial changes in dune and interdune morphology, scale and orientation from the centre to the outer margins of dune fields. A quantitative approach is used to characterize the complexity present where large, morphologically complex and compound bedforms gradually give way to smaller and simpler bedform types at dune-field margins. Parameters describing bedform height, spacing, parent morphological type, bedform orientation, lee-slope expression, and wavelength and amplitude of along-crest sinuosity are recorded in a relational database, along with parameters describing interdune size (long- and short-axis dimensions), orientation, and style of connectivity. The spatial rate of change of morphology of aeolian sub-environments is described through a series of empirical relationships. Spatial changes in dune and interdune morphology have enabled the development of a model with which to propose an improved understanding of the sediment system state of the modern Rub' Al-Khali desert sedimentary system, whereby the generation of an aeolian sediment supply, its availability for aeolian transport and the sand transporting capacity of the wind are each reduced in dune-field margin areas

    Sand Dune Encroachment and Desertification Processes of the Rigboland Sand Sea, Central Iran

    Get PDF
    Early studies on sand dune movement and desertification in Iran have not always been convincingly demonstrated because of problems with the field-based measurements. In some areas where various land uses have been engulfed by aeolian sand dunes, desertification is clear, but in other less settled areas, it may not be so obvious. The objective of this study is to demonstrate encroachments of the Rigboland sand sea, central Iran, in its different directions and variable magnitude rates. Determining the rate and direction of the sand sea movements is critical for specifying which lands should be prioritized and quickly protected. The study has trialed a change detection technique which uses a Cross-Tabulation module to compare two available LandsatTM images over the Rigboland sand sea. This indicates that within a ten-year span (from 1988 to 1998) more than 200 ha/yr were added to the Rigboland sand sea, from the alluvial fan landforms in the eastern upstream, outer margins of the Rigboland sand sea. Coupled with GIS techniques, this type of analysis of the remote sensing (RS) images provides an effective tool for the monitoring and prognostication of sand dune movement and sand sea change.</p
    corecore