40 research outputs found

    Ultrasonically Assisted Preparation of Polysaccharide Microcontainers for Hydrophobic Drugs

    Get PDF
    Stable polysaccharide microcontainers are fabricated by ultrasonically assisted procedure. Ultrasound induces formation of permanent microcontainer shell due to interaction between chitosan and xanthan gum. The obtained system has a core-shell structure with high loading capacity for hydrophobic molecules. The permanent polymer shell thickness of 7-10 nm allows to maintain the microcontainer stability for more than 4 months. The microcontainers in a wide size range of 350-7500 nm were obtained by changing an overall emulsion viscosity. Uptake of the microcontainers by mouse melanoma M3 cells was studied by flow cytometry and confocal microcscopy. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3546

    Progress in melanoma modeling in vitro

    Get PDF
    Melanoma is one of the most studied neoplasia, although laboratory techniques used for investigating this tumor are not fully reliable. Animal models may not predict the human response due to differences in skin physiology and immunity. In addition, international guidelines recommend to develop processes that contribute to the reduction, refinement and replacement of animals for experiments (3Rs). Adherent cell culture has been widely used for the study of melanoma to obtain important information regarding melanoma biology. Nonetheless, these cells grow in adhesion on the culture substrate which differs considerably from the situation in vivo. Melanoma grows in a 3D spatial conformation where cells are subjected to a heterogeneous exposure to oxygen and nutrient. In addition, cell-cell and cell-matrix interaction play a crucial role in the pathobiology of the tumor as well as in the response to therapeutic agents. To better study melanoma new techniques, including spherical models, tumorospheres, and melanoma skin equivalents have been developed. These 3D models allow to study tumors in a microenvironment that is more close to the in vivo situation, and are less expensive and time consuming than animal studies. This review will also describe the new technologies applied to skin reconstructs such as organ-on-a-chip that allows skin perfusion through microfluidic platforms. 3D in vitro models, based on the new technologies, are becoming more sophisticated, representing at a great extent the in vivo situation, the "perfect" model that will allow less involvement of animals up to their complete replacement, is still far from being achieved. This article is protected by copyright. All rights reserved

    Π ΠžΠ›Π¬ Π­ΠŸΠ˜Π’Π•Π›Π˜ΠΠ›Π¬ΠΠž-ΠœΠ•Π—Π•ΠΠ₯Π˜ΠœΠΠ›Π¬ΠΠžΠ“Πž ΠŸΠ•Π Π•Π₯ΠžΠ”Π И ΠΠ£Π’ΠžΠ€ΠΠ“Π˜Π˜ Π’ ΠŸΠ ΠžΠ’Π˜Π’ΠžΠžΠŸΠ£Π₯ΠžΠ›Π•Π’ΠžΠœ ΠžΠ’Π’Π•Π’Π• ΠšΠ›Π•Π’ΠžΠ§ΠΠ«Π₯ Π›Π˜ΠΠ˜Π™ ΠœΠ•Π›ΠΠΠžΠœΠ« НА Π’ΠΠ Π“Π•Π’ΠΠžΠ• Π˜ΠΠ“Π˜Π‘Π˜Π ΠžΠ’ΠΠΠ˜Π• MEK ΠΈ mTOR ΠšΠ˜ΠΠΠ—

    Get PDF
    Introduction. Cutaneous melanoma is a challenge to treat due to rapid progression of disease and acquired resistance to therapy. Autophagy and the epithelial-to-mesenchymal transition (EMT) are closely interrelated and play a key role in tumor progression. Targeted co-inhibition of MEK and mTOR kinases is a potential target for melanoma therapy by downregulatoin of the EMT.Objective: to study the effect of MEK and mTOR co-inhibition on cell viability, ability to form 3D-spheroids and migratory capacity of melanoma cell lines, and correlation of these changes with EMTand autophagy-related markers.Material and Methods. Melanoma cell lines Mel Z and Mel MTP were derived from patients, who were treated at the N.N. Blokhin National Medical Research Center of Oncology. The antiproliferative effect of binimetinib and/or rapamycin was studied by the MTT -test. 3D spheroids were formed using RGD peptides. Cell migration and invasion were assessed by a Boyden chamber migration assay. The expression levels of autophagy and EMT markers were investigated by immunocytochemistry or immunoblotting.Results. Rapamycin increased cytotoxicity of binimetinib in both 2D and 3D melanoma cell line cultures. At the same time, binimetinib and rapamycin reduced invasion, but not migration capacity of melanoma cells in vitro. The effectiveness of the combination was associated with a decrease in the EMT markers (N-cadherin and Ξ²-catenin) and autophagy markers (Beclin 1, p62/SQST M1 and LC3BII ) in melanoma cells.Conclusion. Inactivation of autophagy and EMT leads to overcoming the resistance to current anti-melanoma therapy and can be considered as a promising target for the treatment of melanoma.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π’ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ рСзистСнтности ΠΈ дальнСйшая опухолСвая прогрСссия ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ Π² Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ ΠΊΠΎΠΆΠΈ. ΠŸΡ€ΠΎΡ†Π΅ΡΡ Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΠΈ ΠΈ ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½ΠΎ-ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ (ЭМП) тСсно связаны ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΈ ΠΈΠ³Ρ€Π°ΡŽΡ‚ ΠΊΠ»ΡŽΡ‡Π΅Π²ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ прогрСссии. Π’Π°Ρ€Π³Π΅Ρ‚Π½ΠΎΠ΅ ΠΊΠΎΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠœΠ•Πš ΠΈ mTOR ΠΊΠΈΠ½Π°Π· являСтся ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ мишСнью для Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹, Π½Π°Ρ†Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° Π±Π»ΠΎΠΊΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ЭМП.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния ΠΊΠΎ-ингибирования ΠœΠ•Πš ΠΈ mTOR ΠΊΠΈΠ½Π°Π· Π½Π° Π²Ρ‹ΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ формирования 3D-сфСроидов ΠΈ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ способности ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ взаимосвязь этих ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ с ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π°ΠΌΠΈ ЭМП ΠΈ Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΠΈ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π Π°Π±ΠΎΡ‚Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° Π½Π° ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… линиях ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ Mel Z ΠΈ Mel MTP, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΡ‚ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠ²ΡˆΠΈΡ… Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π² НМИЦ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈΠΌ. Н.Н. Π‘Π»ΠΎΡ…ΠΈΠ½Π°. ΠžΡ†Π΅Π½ΠΊΡƒ Π°Π½Ρ‚ΠΈΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ активности Π±ΠΈΠ½ΠΈΠΌΠ΅Ρ‚ΠΈΠ½ΠΈΠ±Π° ΠΈ/ΠΈΠ»ΠΈ Ρ€Π°ΠΏΠ°ΠΌΠΈΡ†ΠΈΠ½Π° исслСдовали МВВ-тСстом. 3D-сфСроиды ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ Π½Π° основС RGDΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ², ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΡƒΡŽ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΊ ΠΊΠ°ΠΌΠ΅Ρ€Π΅ Π‘ΠΎΠΉΠ΄Π΅Π½Π° ΠΈ базальном матриксС. ИзмСнСния экспрСссии ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΠΈ ΠΈ ЭМП исслСдованы иммуноцитохимичСски ΠΈΠ»ΠΈ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ±Π»ΠΎΡ‚Ρ‚ΠΈΠ½Π³ΠΎΠΌ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°ΠΏΠ°ΠΌΠΈΡ†ΠΈΠ½ усиливал Ρ†ΠΈΡ‚ΠΎΡ‚ΠΎΠΊΡΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Π±ΠΈΠ½ΠΈΠΌΠ΅Ρ‚ΠΈΠ½ΠΈΠ±Π° ΠΊΠ°ΠΊ Π² 2D-, Ρ‚Π°ΠΊ ΠΈ Π² 3D-ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹. ΠŸΡ€ΠΈ этом Π±ΠΈΠ½ΠΈΠΌΠ΅Ρ‚ΠΈΠ½ΠΈΠ± ΠΈ Ρ€Π°ΠΏΠ°ΠΌΠΈΡ†ΠΈΠ½ сниТали инвазию, Π½ΠΎ Π½Π΅ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ in vitro. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ связана со сниТСниСм ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² ЭМП N-ΠΊΠ°Π΄Ρ…Π΅Ρ€ΠΈΠ½Π° ΠΈ Ξ²-ΠΊΠ°Ρ‚Π΅Π½ΠΈΠ½Π° ΠΈ Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ – Π‘Π΅ΠΊΠ»ΠΈΠ½ 1, Ρ€62/SQST M1 ΠΈ LC3BII .Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π˜Π½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΠΈ ΠΈ ЭМП позволяСт ΠΏΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Π²Π°Ρ‚ΡŒ Ρ€Π΅Π·ΠΈΡΡ‚Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ ΠΊ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ рассмотрСна ΠΊΠ°ΠΊ пСрспСктивная мишСнь для Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹

    Nouveaux modèles 3D in vitro à base de sphéroïdes multicellulaires tumoraux pour tester des substances anticancéreuses et des vecteurs de délivrance de médicaments

    No full text
    Multicellular tumor spheroids (MTS) are a promising tool in tumor biology. The aim of the Thesis was to develop a novel highly reproducible technique for MTS formation, and to demonstrate the availability of these spheroids as 3D in vitro model to test anticancer drugs and drug delivery vehicles. Cell self-assembly effect induced by an addition of cyclic RGD-peptides directly to monolayer cultures was studied for 16 cell lines of various origin. Cyclo-RGDfK peptide and its modification with triphenylphosphonium cation (TPP) were found to induce spheroid formation. The spheroids were used as a model to evaluate the cytotoxicity of antitumor drugs (doxorubicin, curcumin, temozolomide) and a number of nano- and micro- formulations (microcontainers, nano-emulsions and micelles).Les sphΓ©roΓ―des multicellulaires tumoraux (SMT) constituent un outil prometteur dans le domaine de l’étude biologique des tumeurs. Le but de la thΓ¨se Γ©tait de dΓ©velopper une technique de la formation de SMT et de dΓ©montrer la disponibilitΓ© de ces sphΓ©roΓ―des comme modΓ¨le in vitro 3D pour tester l’efficacitΓ© de principes actifs anticancΓ©reux ainsi que celle de formulations de dΓ©livrance de mΓ©dicaments. L'effet d’auto-assemblage de cellules induit par une addition des peptides RGD cycliques a Γ©tΓ© Γ©tudiΓ© pour 16 lignΓ©es cellulaires de diffΓ©rentes origines. Le peptide cyclique RGDfK et sa modification avec le cation triphenylphosphonium (TPP) ont permis de mettre en Γ©vidence l’induction de formation de sphΓ©roΓ―des. Les sphΓ©roΓ―des ont Γ©tΓ© employΓ©s comme modΓ¨les pour Γ©valuer la cytotoxicitΓ© de principes actifs antitumoraux (doxorubicine, curcumine, temozolomide) et un certain nombre de formulations nano- et micromΓ©triques (microrΓ©servoirs, nano-Γ©mulsions et micelles)

    ЀотодинамичСская тСрапия солидных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ in vitro ΠΈ in vivo с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ Ρ€ΠΈΠ±ΠΎΡ„Π»Π°Π²ΠΈΠ½Π° ΠΈ Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π°ΠΏΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… фосфоров

    No full text
    Rationale: Riboflavin (vitamin B2) is one of the most promising agents for photodynamic therapy (PDT). However, its use is limited by the excitation in the ultraviolet (UV) and visible spectral ranges and, as a result, by a small penetration into biological tissue not exceeding a few millimeters. This problem could be solved by approaches ensuring excitation of riboflavin molecules within tumor tissues by infrared (IR) light. Upconversion nanoparticles (UCNPs) can be potentially considered as mediators able to effectively convert the exciting radiation of the near IR range, penetrating into biological tissue to a 3 cm depth, into the photoluminescence in the UV and visible spectral ranges.Aim: To evaluate the efficacy of UCNPs for IR-mediated riboflavin activation in the depth of tumor tissue during PDT. Materials and methods: The water-soluble riboflavin flavin mononucleotide (FMN, Pharmstandard-UfaVITA, Russia) was used as a photosensitizer in in vitro and in vivo experiments. The in vitro experiments were performed on human breast adenocarcinoma SK-BR-3, human glioblastoma U-87 MG, and rat glioma C6 cell lines. Lewis lung carcinoma (LLC) inoculated to hybrid BDF1 mice was used as a model to demonstrate the delivery of FMN to the tumor. UCNPs with a core/shell structure [NaYF4:Yb3+, Tm3+/NaYF4] were used for photoactivation of FMN in vivo. PDT based on FMN, UCNPs and laser radiation 975 nm (IR) was performed on mouse xenografts of human breast adenocarcinoma SKBR-3.Results: We were able to show that FMN could act as an effective in vitro photosensitizer for SK-BR-3, U-87 MG, and C6 cell lines. FMN IC50 values for glioma cells were ~30 ΞΌM, and for SK-BR-3 cell line ~50 ΞΌM (24 h incubation, irradiation 4.2 J/cm2). In the LLC model, the appropriate concentration of FMN (30 ΞΌM and above) can be achieved in the tumor as a result of systemic administration of FMN (at 2 and 24 hours after injection). The effect of PDT using near IR light for UCNP-mediated excitation of FMN was demonstrated in mouse xenografts SKBR-3, with the tumor growth inhibition of 90Β±5%.Conclusion: The study has demonstrated the possibility to use riboflavin (vitamin B2) as a photosensitizer for PDT. The photoexcitation of FMN via the anti-Stokes photoluminescence of UCNPs allows for implementation of the PDT technique with the near IR spectral range.ОбоснованиС. Π ΠΈΠ±ΠΎΡ„Π»Π°Π²ΠΈΠ½ (Π²ΠΈΡ‚Π°ΠΌΠΈΠ½ Π’2) считаСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивных Π°Π³Π΅Π½Ρ‚ΠΎΠ² для фотодинамичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Однако Π΅Π³ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΎ Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ Π² ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠΎΠ»Π΅Ρ‚ΠΎΠ²ΠΎΠΌ (Π£Π€) ΠΈ синСм Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°Ρ… спСктра ΠΈ, ΠΊΠ°ΠΊ слСдствиС, ΠΌΠ°Π»ΠΎΠΉ (Π½Π΅ Π±ΠΎΠ»Π΅Π΅ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²) Π³Π»ΡƒΠ±ΠΈΠ½ΠΎΠΉ проникновСния Π² Π±ΠΈΠΎΡ‚ΠΊΠ°Π½ΡŒ. РСшСниСм Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ видится Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ², ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Ρ„ΠΎΡ‚ΠΎΠ²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Ρ€ΠΈΠ±ΠΎΡ„Π»Π°Π²ΠΈΠ½Π° ΠΏΠΎΠ΄ дСйствиСм инфракрасного (ИК) свСта Π² Π³Π»ΡƒΠ±ΠΈΠ½Π΅ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. Π’ качСствС посрСдника, способного эффСктивно ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π°ΡŽΡ‰Π΅Π΅ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π±Π»ΠΈΠΆΠ½Π΅Π³ΠΎ ИК Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°, ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‰Π΅Π΅ Π² Π±ΠΈΠΎΡ‚ΠΊΠ°Π½ΡŒ Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Ρƒ Π΄ΠΎ 3 см, Π² Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡŽ Π£Π€ ΠΈ Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° спСктра, ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ рассмотрСны Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Π΅ Π°ΠΏΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ фосфоры (НАЀ).ЦСль – ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ использования НАЀ для ИК-опосрСдованной Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Ρ€ΠΈΠ±ΠΎΡ„Π»Π°Π²ΠΈΠ½Π° Π² Π³Π»ΡƒΠ±ΠΈΠ½Π΅ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ фотодинамичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Водорастворимая Ρ„ΠΎΡ€ΠΌΠ° Ρ€ΠΈΠ±ΠΎΡ„Π»Π°Π²ΠΈΠ½Π° – Ρ„Π»Π°Π²ΠΈΠ½ΠΌΠΎΠ½ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ (ЀМН) (Ѐармстандарт-Π£Ρ„Π°Π’Π˜Π’Π, Россия) – Π±Ρ‹Π» использован Π² качСствС фотосСнсибилизатора Π² экспСримСнтах in vitro ΠΈ in vivo. ЭкспСримСнты in vitro Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ Π½Π° ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… линиях Π°Π΄Π΅Π½ΠΎΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° SK-BR-3, глиобластомы Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° U-87 MG ΠΈ Π³Π»ΠΈΠΎΠΌΡ‹ крысы C6. ΠšΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π›ΡŒΡŽΠΈΡ, пСрСвитая ΠΌΡ‹ΡˆΠ°ΠΌ-Π³ΠΈΠ±Ρ€ΠΈΠ΄Π°ΠΌ BDF1, Π±Ρ‹Π»Π° использована Π² качСствС ΠΌΠΎΠ΄Π΅Π»ΠΈ для дСмонстрации доставки ЀМН Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΡƒΡŽ Ρ‚ΠΊΠ°Π½ΡŒ. Для Ρ„ΠΎΡ‚ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ЀМН in vivo ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΠ»ΠΈΡΡŒ НАЀ со структурой «ядро/ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠ°Β» [NaYF4:Yb3+, Tm3+/NaYF4]. ЀотодинамичСская тСрапия Π½Π° основС ЀМН, НАЀ ΠΈ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ излучСния 975 Π½ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π½Π° ксСнографтах ΠΌΡ‹ΡˆΠΈ SK-BR-3.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Показано, Ρ‡Ρ‚ΠΎ ЀМН ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹ΡΡ‚ΡƒΠΏΠ°Ρ‚ΡŒ Π² качСствС эффСктивного фотосСнсибилизатора in vitro Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ SK-BR-3, U-87 MG ΠΈ C6. ЗначСния IC50 для ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π³Π»ΠΈΠΎΠΌΡ‹ составляли ~30 мкМ ЀМН, Π° для ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ SK-BR-3 ~50 мкМ ЀМН (24 Ρ‡ ΠΈΠ½ΠΊΡƒΠ±Π°Ρ†ΠΈΠΈ, ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ 4,2 Π”ΠΆ/см2). Π‘ использованиСм ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π›ΡŒΡŽΠΈΡ установлСно, Ρ‡Ρ‚ΠΎ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ концСнтрация ЀМН (30 мкМ ΠΈ Π²Ρ‹ΡˆΠ΅) ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ достигнута Π² ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ систСмного ввСдСния ЀМН (Ρ‡Π΅Ρ€Π΅Π· 2 ΠΈ 24 часа послС ввСдСния). На ксСнографтах ΠΌΡ‹ΡˆΠΈ SK-BR-3 продСмонстрирован эффСкт фотодинамичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ с использованиСм свСта Π±Π»ΠΈΠΆΠ½Π΅Π³ΠΎ ИК Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° для НАЀ-опосрСдованного возбуТдСния ЀМН, Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ роста ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ ΠΏΡ€ΠΈ этом составило 90Β±5%.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния Ρ€ΠΈΠ±ΠΎΡ„Π»Π°Π²ΠΈΠ½Π° (Π²ΠΈΡ‚Π°ΠΌΠΈΠ½Π° Π’2) Π² качСствС фотосСнсибилизатора для фотодинамичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. ИспользованиС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°, основанного Π½Π° Ρ„ΠΎΡ‚ΠΎΠ²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠΈ ЀМН Ρ‡Π΅Ρ€Π΅Π· Π°Π½Ρ‚ΠΈΡΡ‚ΠΎΠΊΡΠΎΠ²ΡƒΡŽ Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡŽ НАЀ, позволяСт Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ фотодинамичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ свСта ΠΈΠ· Π±Π»ΠΈΠΆΠ½Π΅Π³ΠΎ ИК Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° спСктра

    <i>In vitro ΠΈ in vivo</i> photodynamic therapy of solid tumors with a combination of riboflavin and upconversion nanoparticles

    No full text
    Rationale: Riboflavin (vitamin B2) is one of the most promising agents for photodynamic therapy (PDT). However, its use is limited by the excitation in the ultraviolet (UV) and visible spectral ranges and, as a result, by a small penetration into biological tissue not exceeding a few millimeters. This problem could be solved by approaches ensuring excitation of riboflavin molecules within tumor tissues by infrared (IR) light. Upconversion nanoparticles (UCNPs) can be potentially considered as mediators able to effectively convert the exciting radiation of the near IR range, penetrating into biological tissue to a 3 cm depth, into the photoluminescence in the UV and visible spectral ranges.Aim: To evaluate the efficacy of UCNPs for IR-mediated riboflavin activation in the depth of tumor tissue during PDT. Materials and methods: The water-soluble riboflavin flavin mononucleotide (FMN, Pharmstandard-UfaVITA, Russia) was used as a photosensitizer in in vitro and in vivo experiments. The in vitro experiments were performed on human breast adenocarcinoma SK-BR-3, human glioblastoma U-87 MG, and rat glioma C6 cell lines. Lewis lung carcinoma (LLC) inoculated to hybrid BDF1 mice was used as a model to demonstrate the delivery of FMN to the tumor. UCNPs with a core/shell structure [NaYF4:Yb3+, Tm3+/NaYF4] were used for photoactivation of FMN in vivo. PDT based on FMN, UCNPs and laser radiation 975 nm (IR) was performed on mouse xenografts of human breast adenocarcinoma SKBR-3.Results: We were able to show that FMN could act as an effective in vitro photosensitizer for SK-BR-3, U-87 MG, and C6 cell lines. FMN IC50 values for glioma cells were ~30 ΞΌM, and for SK-BR-3 cell line ~50 ΞΌM (24 h incubation, irradiation 4.2 J/cm2). In the LLC model, the appropriate concentration of FMN (30 ΞΌM and above) can be achieved in the tumor as a result of systemic administration of FMN (at 2 and 24 hours after injection). The effect of PDT using near IR light for UCNP-mediated excitation of FMN was demonstrated in mouse xenografts SKBR-3, with the tumor growth inhibition of 90Β±5%.Conclusion: The study has demonstrated the possibility to use riboflavin (vitamin B2) as a photosensitizer for PDT. The photoexcitation of FMN via the anti-Stokes photoluminescence of UCNPs allows for implementation of the PDT technique with the near IR spectral range
    corecore