25 research outputs found
SUMOylation in the control of cholesterol homeostasis
SUMOylation-protein modification by the small ubiquitin-related modifier (SUMO)-affects several cellular processes by modulating the activity, stability, interactions or subcellular localization of a variety of substrates. SUMO modification is involved in most cellular processes required for the maintenance of metabolic homeostasis. Cholesterol is one of the main lipids required to preserve the correct cellular function, contributing to the composition of the plasma membrane and participating in transmembrane receptor signalling. Besides these functions, cholesterol is required for the synthesis of steroid hormones, bile acids, oxysterols and vitamin D. Cholesterol levels need to be tightly regulated: in excess, it is toxic to the cell, and the disruption of its homeostasis is associated with various disorders like atherosclerosis and cardiovascular diseases. This review focuses on the role of SUMO in the regulation of proteins involved in the metabolism of cholesterol.We apologize to those whose related publications could not be cited due to space limitations. We are grateful to all members of Barrio's Lab for comments and suggestions. R.B. acknowledges grant nos. BFU2017-84653-P (MINECO/AEI/FEDER/EU), SEV-2016-0644 (Severo Ochoa Excellence Program, MINECO/AEI), 765445-EU (UbiCODE Program, EU) and SAF2017-90900-REDT (UBIRed Program, MINECO/AEI)
The role of SUMOylation during development
During the development of multicellular organisms, transcriptional regulation plays an important role in the control of cell growth, differentiation and morphogenesis. SUMOylation is a reversible post-translational process involved in transcriptional regulation through the modification of transcription factors and through chromatin remodelling (either modifying chromatin remodelers or acting as a `molecular glue' by promoting recruitment of chromatin regulators). SUMO modification results in changes in the activity, stability, interactions or localization of its substrates, which affects cellular processes such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic transport. This review focuses on the role of SUMO machinery and the modification of target proteins during embryonic development and organogenesis of animals, from invertebrates to mammals.We apologize to those whose related publication could not be cited due to space limitations. We are grateful to all members of Barrio's Lab for comments and suggestions. R.B. acknowledges grants BFU2017-84653-P (MINECO/AEI/FEDER/EU), SEV-2016-0644 (Severo Ochoa Excellence Program, MINECO/AEI), 765445-EU (UbiCODE Program, EU), SAF2017-90900-REDT (UBIRed Program, MINECO/AEI)
Función del Represor Capicua en la Interpretación de Señales RTK-Ras-MAPK en "Drosophila"
Las señales receptor tirosina kinasa (RTK) controlan un amplio abanico de decisiones durante el desarrollo de un animal, como la proliferación celular, diferenciación, morfogénesis y supervivencia. Muchas de estas señales se transducen a través de la cascada de Ras-MAPK que en última instancia fosforilan un factor de transcripción regulando la expresión de distintos genes. Los mecanismos moleculares por los que la señalización por RTKs inducen repuestas tan diversas permanecen aún sin esclarecer. Los efectores de la vía más estudiados en Drosophila son Pointed y Yan donde en ausencia de señalización, los genes diana se mantienen reprimidos por Yan, mientras que la actividad de la vía fosforila Pointed y Yan, resultando en la activación transcripcional a través de la asociación de Pointed al ADN. Estudios más recientes han mostrado que otro de los factores fosforilado por la vía es Capicua (Cic). Cic es un represor materno que es fosforilado por la MAPK y esta fosforilación dirige la desactivación de la proteína.
En este trabajo, hemos mostrado que las secuencias de unión a Cic en sus genes diana representan un mecanismo general de interpretación de la señal por Ras-MAPK. Hemos descrito el mecanismo por el que la vía de Torso regula los genes huckebein (hkb) y tailless (tll) a través de la desactivación de Cic en los polos del embrión en el estadio de blastodermo sincitial. La expresión restringida de tll y hkb a los polos del embrión por la proteína Cic, permite la expresión de genes del tronco para la correcta segmentación del eje A/P del animal. Además, hemos definido una nueva diana de Cic en el eje dorsoventral (D/V) del embrión, intermediate neuroblast defective (ind), que alberga la función de diferenciar la células que dan lugar a los neuroblastos intermedios del sistema nervioso central.
Experimentos adicionales nos han permitido describir el mecanismo por el que Cic regula el gen argos en repuesta a la señalización por EGFR, en el disco imaginal de ala. En este contexto, al contrario que en los casos del embrión, la desactivación de la proteína Cic en respuesta a la vía de EGFR no es el único mecanismo por el que se induce el gen diana. Trabajos posteriores tendrán que explicar esta red de regulaciones más compleja.
Además de la identificación de la secuencia de unión de Cic a los elementos reguladores de sus genes diana, hemos estudiado el papel del correpresor Groucho (Gro) en la regulación de hkb. Trabajos anteriores habían implicado a Gro en la regulación de los genes hkb y tll ya que embriones mutantes para gro muestran un patrón expandido de estos genes terminales. Este patrón, es muy similar al que se observa en embriones mutantes cic por lo que se ha sugerido que Gro podría actuar junto a Cic para la regulación de hkb y tll. Nosotros hemos podido demostrar que los lugares de unión de Cic en el enhancer de hkb son importantes para reclutar Gro al ADN. Este resultado nos indica que Gro está actuando a través de Cic para mediar la represión y no a través de otro factor que también pudiera regular la expresión de hkb.
La señalización por EGFR en las células dorsoanteriores del ovario está implicada en el establecimiento del eje D/V a través de la represión del gen pipe (pip) en esta región. Nosotros hemos podido demostrar que esta regulación ocurre de manera análoga a la del embrión. Cic reprime los represores inducidos por la vía de señalización, Tll y Mirror (Mirr) en el embrión y ovario respectivamente, para posibilitar la expresión de sus genes diana, Kruppel (Kr) y pip, y así determinar las regiones que les corresponden como el tronco en el embrión y la región ventral en el ovario.
Por otro lado hemos descrito un nuevo mecanismo por el que los substratos de la MAPK compiten entre ellos por la fosforilación por debajo de la vía de Torso. Así, hemos explicado la razón por la que aún habiendo más MAPK fosforilada en el polo anterior del embrión, existe una menor desactivación de Cic y cómo este efecto puede afectar la regulación de los genes diana.The function of Capicua repressor in the interpretation of RTK-Ras-MAPK signaling in Drosophila
Receptor tyrosine kinase (RTK) signaling pathways control multiple decisions during Drosophila development such as proliferation, differentiation, morphogenesis, and survival. Many RTKs signal through the very well conserved Ras-MAPK cassette that ultimately phosphorylate a nuclear factor altering the transcriptional output in many different contexts. The molecular mechanisms that lead to so many different outputs are still under study.
In this work we have analyzed the molecular mechanism by which Capicua (Cic), a recently described downstream repressor of the pathway, regulates gene expression in different contexts. We found that the Cic binding sites represent a general mechanism of Ras-MAPK signaling interpretation. Cic is downregulated in the cells with active signaling pathway alleviating the repression on its target genes. In the cells with no active signaling, Cic is repressing its targets localizing their expression to restricted patterns. We showed that Cic regulates huckebein (hkb) and tailless (tll) expression at the poles of the blastoderm embryo allowing a correct A/P axis formation. hkb regulation by Cic requires the association to the global co-repressor Gro. We also found that Cic regulates intermediate neuroblast defective (ind) gene in the D/V axis of the embryo for the intermediate neuroblast formation and it regulates argos (aos) gene expression in the wing imaginal disc for a stereotyped wing vein pattern formation.
We also showed that the mechanism by which the EGFR signaling pathway restricts pipe (pip) expression to the ventral follicle cells of the ovary is analogous to that occurring in the embryo: Cic restricts mirr expression to the cells with active EGFR signaling in the dorsoanterior follicle cells to allow the expression of its target, pip, in the ventral region.
Finally, we also showed a novel mechanism by which MAPK substrates compete for the phosphorylation, and this mechanism explains why in the anterior pole of the embryo, containing higher concentration of phosphorylated MAPK, Cic protein concentration is higher
MAPK substrate competition integrates patterning signals in the Drosophila embryo
et al.Terminal regions of the Drosophila embryo are patterned by the localized activation of the mitogen-activated protein kinase (MAPK) pathway [1]. This depends on the MAPK-mediated downregulation of Capicua (Cic), a repressor of the terminal gap genes [2, 3]. We establish that downregulation of Cic is antagonized by the anterior patterning morphogen Bicoid (Bcd). We demonstrate that this effect does not depend on transcriptional activity of Bcd and provide evidence suggesting that Bcd, a direct substrate of MAPK, decreases the availability of MAPK for its other substrates, such as Cic. Based on the quantitative analysis of MAPK signaling in multiple mutants, we propose that MAPK substrate competition coordinates the actions of the anterior and terminal patterning systems. In addition, we identify Hunchback as a novel target of MAPK phosphorylation that can account for the previously described genetic interaction between the posterior and terminal systems [4]. Thus, a common enzyme-substrate competition mechanism can integrate the actions of the anterior, posterior, and terminal patterning signals. Substrate competition can be a general signal integration strategy in networks where enzymes, such as MAPK, interact with their multiple regulators and targets [5-10]. © 2010 Elsevier Ltd. All rights reserved.S.Y.S. is supported by the R01 GM078079 National Institutes of Health grant. Z.P. is supported by grants from the Israel Science Foundation (Center of Excellence; 180/09), Israel Cancer Research Fund, and the Król Charitable Foundation. G.J. is supported by the Spanish Ministry of Science and Education (BFU2005-02673) and by Institució Catalana de Recerca i Estudis Avançats.Peer Reviewe
EGFR-dependent downregulation of Capicua and the establishment of Drosophila dorsoventral polarity
Dorsoventral (DV) axis formation in Drosophila begins during oogenesis through the graded activation of the EGF receptor (EGFR)-Ras-MAPK signaling pathway in the follicle cell layer of the egg chamber. EGFR signaling, which is higher in dorsal follicle cells, represses expression of the sulfotransferase-encoding gene pipe, thereby delimiting a ventral domain of Pipe activity that is critical for the subsequent induction of ventral embryonic fates. We have characterized the transcriptional circuit that links EGFR signaling to pipe repression: in dorsal follicle cells, the homeodomain transcription factor Mirror (Mirr), which is induced by EGFR signaling, directly represses pipe transcription, whereas in ventral follicle cells, the HMG-box protein Capicua (Cic) supports pipe expression by repressing mirr. Although Cic is under negative post-transcriptional regulation by Ras-MAPK signaling in different contexts, the relevance of this mechanism for the interpretation of the EGFR signal during DV pattern formation remains unclear. Here, we consider a model where EGFR-mediated downregulation of Cic modulates the spatial distribution of Mirr protein in lateral follicle cells, thereby contributing to define the position at which the pipe expression border is formed. © 2012 Landes Bioscience.This work was funded by grants from the Spanish MICINN (BFU2008-01875 and BFU2011-23611 to G.J., and BFU2008-03762, BFU2011-22617 and CONSOLIDER CDS2007-00008 to S.C.), an institutional grant from Fundación Ramón Areces to the CBMSO, and the Generalitat de Catalunya (2009SGR-1075). G.J. is an ICREA investigator.Peer Reviewe
Origins of Context-Dependent Gene Repression by Capicua
© 2015 Forés et al. Receptor Tyrosine Kinase (RTK) signaling pathways induce multiple biological responses, often by regulating the expression of downstream genes. The HMG-box protein Capicua (Cic) is a transcriptional repressor that is downregulated in response to RTK signaling, thereby enabling RTK-dependent induction of Cic targets. In both Drosophila and mammals, Cic is expressed as two isoforms, long (Cic-L) and short (Cic-S), whose functional significance and mechanism of action are not well understood. Here we show that Drosophila Cic relies on the Groucho (Gro) corepressor during its function in the early embryo, but not during other stages of development. This Gro-dependent mechanism requires a short peptide motif, unique to Cic-S and designated N2, which is distinct from other previously defined Gro-interacting motifs and functions as an autonomous, transferable repressor element. Unexpectedly, our data indicate that the N2 motif is an evolutionary innovation that originated within dipteran insects, as the Cic-S isoform evolved from an ancestral Cic-L-type form. Accordingly, the Cic-L isoform lacking the N2 motif is completely inactive in early Drosophila embryos, indicating that the N2 motif endowed Cic-S with a novel Gro-dependent activity that is obligatory at this stage. We suggest that Cic-S and Gro coregulatory functions have facilitated the evolution of the complex transcriptional network regulated by Torso RTK signaling in modern fly embryos. Notably, our results also imply that mammalian Cic proteins are unlikely to act via Gro and that their Cic-S isoform must have evolved independently of fly Cic-S. Thus, Cic proteins employ distinct repressor mechanisms that are associated with discrete structural changes in the evolutionary history of this protein family.This work was funded by research grants from the Spanish Government (BFU2008-01875 and BFU2011-23611), Generalitat de Catalunya (2009SGR-1075) and Fundació La Marató de TV3 (20131730). GJ is an ICREA investigator. ZP is supported by grants from the National Institute of General Medical Sciences (NIH R01GM086537), the Israel Science Foundation (Center of Excellence; 1772/13) and the Król Charitable Foundation. ZP is an incumbent of The Lady Davis Chair in Experimental Medicine and Cancer ResearchPeer Reviewe
Mirror represses pipe expression in follicle cells to initiate dorsoventral axis formation in Drosophila
Dorsoventral (DV) axis formation in Drosophila begins with selective activation of EGFR, a receptor tyrosine kinase (RTK), in dorsal-anterior (DA) ovarian follicle cells. A critical event regulated by EGFR signaling is the repression of the sulfotransferase-encoding gene pipe in dorsal follicle cells, but how this occurs remains unclear. Here we show that Mirror (Mirr), a homeodomain transcription factor induced by EGFR signaling in DA follicle cells, directly represses pipe expression by binding to a conserved element in the pipe regulatory region. In addition, we find that the HMG-box protein Capicua (Cic) supports pipe expression in ventral follicle cells by repressing Mirr in this region. Interestingly, this role of Cic resembles its function in regulating anteroposterior (AP) body patterning, where Cic supports gap gene expression in central regions of the embryo by repressing Tailless, a repressor induced by RTK signaling at the embryonic poles. Thus, related RTK-Cic repressor circuits regulate the early stages of Drosophila DV and AP body axis formation. © 2012. Published by The Company of Biologists Ltd.Este trabajo fue financiado por subvenciones del Ministerio de España de Ciencia e Innovación (MICINN) [BFU2008-01875/BMC, BFU2008-03762/BMC, CONSOLIDER CDS2007-00008]; una subvención institucional de la Fundación Ramón Areces para el CBMSO; y por la Generalitat de Catalunya (2009SGR-1075).Peer Reviewe
Role of a versatile peptide motif controlling Hox nuclear export and autophagy in the Drosophila fat body
International audienceHox proteins are major regulators of embryonic development, acting in the nucleus to regulate the expression of their numerous downstream target genes. By analyzing deletion forms of the Drosophila Hox protein Ultrabithorax (Ubx), we identified the presence of an unconventional nuclear export signal (NES) that overlaps with a highly conserved motif originally described as mediating the interaction with the PBC proteins, a generic and crucial class of Hox transcriptional cofactors that act in development and cancer. We show that this unconventional NES is involved in the interaction with the major exportin protein CRM1 (also known as Embargoed in flies) in vivo and in vitro We find that this interaction is tightly regulated in the Drosophila fat body to control the autophagy-repressive activity of Ubx during larval development. The role of the PBC interaction motif as part of an unconventional NES was also uncovered in other Drosophila and human Hox proteins, highlighting the evolutionary conservation of this novel function. Together, our results reveal the extreme molecular versatility of a unique short peptide motif for controlling the context-dependent activity of Hox proteins both at transcriptional and non-transcriptional levels