327 research outputs found

    Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods

    Get PDF
    Fluorescence imaging of hybrid nanostructures composed of a bacterial light-harvesting complex LH2 and Au nanorods with controlled coupling strength is employed to study the spectral dependence of the plasmon-induced fluorescence enhancement. Perfect matching of the plasmon resonances in the nanorods with the absorption bands of the LH2 complexes facilitates a direct comparison of the enhancement factors for longitudinal and transverse plasmon frequencies of the nanorods. We find that the fluorescence enhancement due to excitation of longitudinal resonance can be up to five-fold stronger than for the transverse one. We attribute this result, which is important for designing plasmonic functional systems, to a very different distribution of the enhancement of the electric field due to the excitation of the two characteristic plasmon modes in nanorods

    Sub-wavelength surface IR imaging of soft-condensed matter

    Full text link
    Outlined here is a technique for sub-wavelength infrared surface imaging performed using a phase matched optical parametric oscillator laser and an atomic force microscope as the detection mechanism. The technique uses a novel surface excitation illumination approach to perform simultaneously chemical mapping and AFM topography imaging with an image resolution of 200 nm. This method was demonstrated by imaging polystyrene micro-structures

    Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods

    No full text
    International audienceWe report on the observation of second-order infrared (IR) plasmon resonances in lithographically prepared gold nanorods investigated by means of far-field microscopic IR spectroscopy. In addition to the fundamental antennalike mode, even and odd higher order resonances are observed under normal incidence of light. The activation of even-order modes under normal incidence is surprising since even orders are dipole-forbidden because of their centrosymmetric charge density oscillation. Performing atomic force microscopy and calculations with the boundary element method, we determine that excitation of even modes is enabled by symmetry breaking by structural deviations of the rods from an ideal, straight shape. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3437093

    Single-molecule optomechanics in "picocavities"

    Get PDF
    Trapping light with noble metal nanostructures overcomes the diffraction limit and can confine light to volumes typically on the order of 30 cubic nanometers. We found that individual atomic features inside the gap of a plasmonic nanoassembly can localize light to volumes well below 1 cubic nanometer ("picocavities"), enabling optical experiments on the atomic scale. These atomic features are dynamically formed and disassembled by laser irradiation. Although unstable at room temperature, picocavities can be stabilized at cryogenic temperatures, allowing single atomic cavities to be probed for many minutes. Unlike traditional optomechanical resonators, such extreme optical confinement yields a factor of 106^{6} enhancement of optomechanical coupling between the picocavity field and vibrations of individual molecular bonds. This work sets the basis for developing nanoscale nonlinear quantum optics on the single-molecule level.Supported by Project FIS2013-41184-P from MINECO (Ministerio de Economía y Competitividad) and IT756-13 from the Basque government consolidated groups (M.K.S., Y.Z., A. Demetriadou, R.E., and J.A.); the Winton Programme for the Physics of Sustainability (F.B.); the Dr. Manmohan Singh scholarship from St. John’s College (R.C.); the UK National Physical Laboratory (C.C.); the Fellows Gipuzkoa Program of the Gipuzkoako Foru Aldundia via FEDER funds of the European Union “Una manera de hacer Europa” (R.E.); UK Engineering and Physical Sciences Research Council grants EP/G060649/1 and EP/L027151/1; and European Research Council grant LINASS 320503

    Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface

    Full text link
    We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding two orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO2 substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.Comment: 12 pages, 4 figure

    DNA metabarcoding and spatial modelling link diet diversification with distribution homogeneity in European bats

    Get PDF
    Inferences of the interactions between species’ ecological niches and spatial distribution have been historically based on simple metrics such as low-resolution dietary breadth and range size, which might have impeded the identification of meaningful links between niche features and spatial patterns. We analysed the relationship between dietary niche breadth and spatial distribution features of European bats, by combining continent-wide DNA metabarcoding of faecal samples with species distribution modelling. Our results show that while range size is not correlated with dietary features of bats, the homogeneity of the spatial distribution of species exhibits a strong correlation with dietary breadth. We also found that dietary breadth is correlated with bats’ hunting flexibility. However, these two patterns only stand when the phylogenetic relations between prey are accounted for when measuring dietary breadth. Our results suggest that the capacity to exploit different prey types enables species to thrive in more distinct environments and therefore exhibit more homogeneous distributions within their rangesinfo:eu-repo/semantics/publishedVersio

    New Colloidal Lithographic Nanopatterns Fabricated by Combining Pre-Heating and Reactive Ion Etching

    Get PDF
    We report a low-cost and simple method for fabrication of nonspherical colloidal lithographic nanopatterns with a long-range order by preheating and oxygen reactive ion etching of monolayer and double-layer polystyrene spheres. This strategy allows excellent control of size and morphology of the colloidal particles and expands the applications of the colloidal patterns as templates for preparing ordered functional nanostructure arrays. For the first time, various unique nanostructures with long-range order, including network structures with tunable neck length and width, hexagonal-shaped, and rectangular-shaped arrays as well as size tunable nanohole arrays, were fabricated by this route. Promising potentials of such unique periodic nanostructures in various fields, such as photonic crystals, catalysts, templates for deposition, and masks for etching, are naturally expected

    Plasmonic antenna hybrids for active control in the near and midinfrared

    Get PDF
    Resumen del trabajo presentado a la Spanish Conference on Nanophotonics (Conferencia Española de Nanofotónica-CEN), celebrada en Donostia-San Sebastián (España) del 3 al 5 de octubre de 2018.Hybrid platforms combining metallic plasmonic nanoantennas (NAs) and materials with interesting properties as phase-change or spintronics offer excellent technological opportunities for active plasmonics, as they can provide large changes in their optical response. In this talk I will demostrate first how gold NAs grown on vanadium dioxie (VO2), characterized by a reversible insulator-to-metal transition (IMT) at around 68ºC, can improve the performance of this material by providing an efficient enhancement mechanism for both the optically induced excitation and readout. Using picosecond laser pulses a highly localized phase transition is driven in nanoscale regions around the NAs. These antennas-VO2 hybrid solutions provide a conceptual framework to merge field localization and phase transition enabling nanoscale optical memory functionalities. In the second part I will show how the combination of Au microantenna arrays with a Ni81Fe19/Au multilayer supports provide metamaterial platforms with new functionalities. In this case, the plasmon resonance sustained by the NAs alliate with the GMR and MRE effects of the multilayer to allow low magnetic-field controlled modulation in the mid-infrared, where light modulation is very challenging. This approach establishes a roadmap for spintronically-controlled devices in the whole mid-IR to THz band.Peer Reviewe

    Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors

    Get PDF
    Superconducting nanowire single photon detectors are rapidly emerging as a key infrared photon-counting technology. Two front-side-coupled silver dipole nanoantennas, simulated to have resonances at 1480 and 1525 nm, were fabricated in a two-step process. An enhancement of 50 to 130% in the system detection efficiency was observed when illuminating the antennas. This offers a pathway to increasing absorption into superconducting nanowires, creating larger active areas, and achieving more efficient detection at longer wavelengths
    corecore