166 research outputs found

    CMC is more than a measure of corticospinal tract integrity in acute stroke patients

    Get PDF
    In healthy subjects, motor cortex activity and electromyographic (EMG) signals from contracting contralateral muscle show coherence in the beta (15-30 Hz) range. Corticomuscular coherence (CMC) is considered a sign of functional coupling between muscle and brain. Based on prior studies, CMC is altered in stroke, but functional significance of this finding has remained unclear. Here, we examined CMC in acute stroke patients and correlated the results with clinical outcome measures and corticospinal tract (CST) integrity estimated with diffusion tensor imaging (DTI). During isometric contraction of the extensor carpi radialis muscle, EMG and magneto encephalographic oscillatory signals were recorded from 29 patients with paresis of the upper extremity due to ischemic stroke and 22 control subjects. CMC amplitudes and peak frequencies at 13-30 Hz were compared between the two groups. In the patients, the peak frequency in both the affected and the unaffected hemisphere was significantly (p < 0.01) lower and the strength of CMC was significantly (p < 0.05) weaker in the affected hemisphere compared to the control subjects. The strength of CMC in the patients correlated with the level of tactile sensitivity and clinical test results of hand function. In contrast, no correlation between measures of CST integrity and CMC was found. The results confirm the earlier findings that CMC is altered in acute stroke and demonstrate that CMC is bidirectional and not solely a measure of integrity of the efferent corticospinal tract.Peer reviewe

    Observations of an auroral streamer in a double oval configuration

    Get PDF
    During the late evening and night of 14 September 2004, the nightside auroral oval shows a distinct double oval configuration for several hours after a substorm onset at ~18:45 UT. This structure is observed both by the IMAGE satellite optical instruments focusing on the Southern Hemisphere, and by the MIRACLE ground-based instrument network in Scandinavia. At ~21:17 UT during the recovery phase of the substorm, an auroral streamer is detected by these instruments and the EISCAT radar, while simultaneously the Cluster satellites observe a bursty bulk flow in the conjugate portion of the plasma sheet in the magnetotail. Our combined data analysis reveals significant differences between the ionospheric equivalent current signature of this streamer within a double oval configuration, as compared to previously studied streamer events without such a configuration. We attribute these differences to the presence of an additional poleward polarization electric field between the poleward and the equatorward portions of the double oval, and show with a simple model that such an assumption can conceptually explain the observations. Further, we estimate the total current transferred in meridional direction by this recovery phase streamer to ~80 kA, significantly less than for previously analysed expansion phase streamer events. Both results indicate that the development of auroral streamers is dependent on the ambient background conditions in the magnetosphere-ionosphere system. The auroral streamer event studied was simultaneously observed in the conjugate Northern and Southern Hemisphere ionosphere

    Island properties dominate species traits in determining plant colonizations in an archipelago system

    Get PDF
    The extrinsic determinants hypothesis emphasizes the essential role of environmental heterogeneity in species' colonization. Consequently, high resident species diversity can increase community susceptibility to colonizations because good habitats may support more species that are functionally similar to colonizers. On the other hand, colonization success is also likely to depend on species traits. We tested the relative importance of environmental characteristics and species traits in determining colonization success using census data of 587 vascular plant species collected about 70 yr apart from 471 islands in the archipelago of SW Finland. More specifically, we explored potential new colonization as a function of island properties (e.g. location, area, habitat diversity, number of resident species per unit area), species traits (e.g. plant height, life-form, dispersal vector, Ellenberg indicator values, association with human impact), and species' historical distributions (number of inhabited islands, nearest occurrence). Island properties and species' historical distributions were more effective than plant traits in explaining colonization outcomes. Contrary to the extrinsic determinants hypothesis, colonization success was neither associated with resident species diversity nor habitat diversity per se, although colonization was lowest on sparsely vegetated islands. Our findings lead us to propose that while plant traits related to dispersal and establishment may enhance colonization, predictions of plant colonizations primarily require understanding of habitat properties and species' historical distributions.Peer reviewe

    Multiscale magnetic underdense regions on the solar surface: Granular and Mesogranular scales

    Get PDF
    The Sun is a non-equilibrium dissipative system subjected to an energy flow which originates in its core. Convective overshooting motions create temperature and velocity structures which show a temporal and spatial evolution. As a result, photospheric structures are generally considered to be the direct manifestation of convective plasma motions. The plasma flows on the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns which are observed as a variety of multiscale magnetic patterns. High resolution magnetograms of quiet solar surface revealed the presence of magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales we used a "voids" detection method. The computed voids distribution shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at 5-10 Mm mesogranular scales. The absence of preferred scales of organization in the 2-10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale

    First E region observations of mesoscale neutral wind interaction with auroral arcs

    Get PDF
    We report the first observations of E region neutral wind fields and their interaction with auroral arcs at mesoscale spatial resolution during geomagnetically quiet conditions at Mawson, Antarctica. This was achieved by using a scanning Doppler imager, which can observe thermospheric neutral line-of-sight winds and temperatures simultaneously over a wide field of view. In two cases, the background E region wind field was perpendicular to an auroral arc, which when it appeared caused the wind direction within ∼50 km of the arc to rotate parallel along the arc, reverting to the background flow direction when the arc disappeared. This was observed under both westward and eastward plasma convection. The wind rotations occurred within 7–16 min. In one case, as an auroral arc propagated from the horizon toward the local zenith, the background E region wind field became significantly weaker but remained unaffected where the arc had not passed through. We demonstrate through modeling that these effects cannot be explained by height changes in the emission layer. The most likely explanation seems to be the greatly enhanced ion drag associated with the increased plasma density and localized ionospheric electric field associated with auroral arcs. In all cases, the F region neutral wind appeared less affected by the auroral arc, although its presence is clear in the data

    ICESTARS : integrated circuit/EM simulation and design technologies for advanced radio systems-on-chip

    Get PDF
    ICESTARS solved a series of critical issues in the currently available infrastructure for the design and simulation of new and highly-complex Radio Frequency (RF) front ends operating beyond 10 and up to 100 GHz. Future RF designs demand an increasing blend of analog and digital functionalities. The super and extremely high frequency (SHF, 3-30GHz, and EHF, 30-300GHz) ranges will be used to accomplish future demands for higher capacity channels. With todays frequency bands of approximately 1 to 3 GHz it is impossible to realize extremely high data transfer rates. Only a new generation of CAD and EDA tools will ensure the realization of complex nanoscale designs. It necessitates both new modeling approaches and new mathematical solution procedures for differential equations with largely differing time scales, analysis of coupled systems of DAEs (circuit equations) and PDEs (Maxwell equations for electromagnetic couplings) plus numerical simulations with mixed analog and digital signals. In ICESTARS new techniques and mathematical models working in highly integrated environments were developed to resolve this dilemma. The ICESTARS research area covered the three domains of RF design: (1) time-domain techniques, (2) frequency-domain techniques, and (3) EM analysis and coupled EM circuit analysis. The ICESTARS consortium comprised two industrial partners (NXP Semiconductors, Infineon Technologies AG), two SMEs (Magwel, AWR-APLAC) and five universities (Upper Austria, Cologne, Oulu, Wuppertal, Aalto), involving mathematicians, electronic engineers, and software engineers

    The spatial scale of competition from recruits on an older cohort in Atlantic salmon

    Get PDF
    Competitive effects of younger cohorts on older ones are frequently assumed to be negligible in species where older, larger individuals dominate in pairwise behavioural interactions. Here, we provide field estimates of such competition by recruits on an older age class in Atlantic salmon (Salmo salar), a species where observational studies have documented strong body size advantages which should favour older individuals in direct interactions. By creating realistic levels of spatial variation in the density of underyearling (YOY) recruits over a 1-km stretch of a stream, and obtaining accurate measurements of individual growth rates of overyearlings (parr) from capture–mark–recapture data on a fine spatial scale, we demonstrate that high YOY density can substantially decrease parr growth. Models integrating multiple spatial scales indicated that parr were influenced by YOY density within 16 m. The preferred model suggested parr daily mass increase to be reduced by 39% when increasing YOY density from 0.0 to 1.0 m−2, which is well within the range of naturally occurring densities. Reduced juvenile growth rates will in general be expected to reduce juvenile survival (via increased length of exposure to freshwater mortality) and increase generation times (via increased age at seaward migrations). Thus, increased recruitment can significantly affect the performance of older cohorts, with important implications for population dynamics. Our results highlight that, even for the wide range of organisms that rely on defendable resources, the direction of competition among age classes cannot be assumed a priori or be inferred from behavioural observations alone

    Sex-Specific Growth and Reproductive Dynamics of Red Drum in the Northern Gulf of Mexico

    Get PDF
    The Red Drum Sciaenops ocellatus stock is heavily targeted in the Gulf of Mexico (GOM) by recreational fishers and supports a small commercial fishery in Mississippi. Despite their popularity, little recent work has been done to describe their life history. In this work, we describe sex‐specific growth and reproductive dynamics of Red Drum collected from the northern GOM from September 2016 through October 2017. We evaluated seven candidate growth models and found that the three‐parameter von Bertalanffy growth function (VBGF) was the best candidate length‐at‐age model. No significant difference in growth between sexes was observed with the three‐parameter VBGF, despite the female‐specific curve having a larger mean asymptotic length than the male‐specific curve. All seven candidate growth models predicted similar mean length‐at‐age estimates, and four of them exhibited significant differences in sex‐specific mean length at age, with females reaching a larger length at age than males after age 5. There was no significant difference between the sex‐specific weight‐at‐length relationships. Red Drum are batch spawners that spawn in northern GOM coastal waters during August and September. We estimated 3.7 d between spawns and 10.5 spawning events per female in 2017. Nearly 20% of fish collected during the spawning season were sexually mature but reproductively inactive, indicating the possibility of skipped spawning. The age at 50% maturity was around 3 years (length at 50% maturity = 670 mm TL) in both sexes, but fish were not spawning capable until age 4.5 (703 mm TL) in males and age 5.8 (840 mm TL) in females. Furthermore, elevated gonadosomatic indices were not observed until around age 5–6. The updated life history information presented in this work helps to address current data limitations and provides critical information for future assessments of Red Drum stocks in the northern GOM

    Comparative patterns of plant invasions in the mediterranean biome

    Get PDF
    The objective of this work was to compare and contrast the patterns of alien plant invasions in the world’s five mediterranean-climate regions (MCRs). We expected landscape age and disturbance history to have bearing on levels of invasion. We assembled a database on naturalized alien plant taxa occurring in natural and semi-natural terrestrial habitats of all five regions (specifically Spain, Italy, Greece and Cyprus from the Mediterranean Basin, California, central Chile, the Cape Region of South Africa and Southwestern - SW Australia). We used multivariate (hierarchical clustering and NMDS ordination) trait and habitat analysis to compare characteristics of regions, taxa and habitats across the mediterranean biome. Our database included 1627 naturalized species with an overall low taxonomic similarity among the five MCRs. Herbaceous perennials were the most frequent taxa, with SW Australia exhibiting both the highest numbers of naturalized species and the highest taxonomic similarity (homogenization) among habitats, and the Mediterranean Basin the lowest. Low stress and highly disturbed habitats had the highest frequency of invasion and homogenization in all regions, and high natural stress habitats the lowest, while taxonomic similarity was higher among different habitats in each region than among regions. Our analysis is the first to describe patterns of species characteristics and habitat vulnerability for a single biome. We have shown that a broad niche (i.e. more than one habitat) is typical of naturalized plant species, regardless of their geographical area of origin, leading to potential for high homogenization within each region. Habitats of the Mediterranean Basin are apparently the most resistant to plant invasion, possibly because their landscapes are generally of relatively recent origin, but with a more gradual exposure to human intervention over a longer period
    • …
    corecore