25 research outputs found

    sAOP:linking chemical stressors to adverse outcomes pathway networks

    Get PDF
    International audienceMotivation: Adverse outcome pathway (AOP) is a toxicological concept proposed to provide a mechanistic representation of biological perturbation over different layers of biological organization. Although AOPs are by definition chemical-agnostic, many chemical stressors can putatively interfere with one or several AOPs and such information would be relevant for regulatory decision-making. Results: With the recent development of AOPs networks aiming to facilitate the identification of interactions among AOPs, we developed a stressor-AOP network (sAOP). Using the 'cytotoxitiy burst' (CTB) approach, we mapped bioactive compounds from the ToxCast data to a list of AOPs reported in AOP-Wiki database. With this analysis, a variety of relevant connections between chemicals and AOP components can be identified suggesting multiple effects not observed in the simplified 'one-biological perturbation to one-adverse outcome' model. The results may assist in the prioritization of chemicals to assess risk-based evaluations in the context of human health

    Analysis of Time-Series Gene Expression Data to Explore Mechanisms of Chemical-Induced Hepatic Steatosis Toxicity

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) represents a wide spectrum of disease, ranging from simple fatty liver through steatosis with inflammation and necrosis to cirrhosis. One of the most challenging problems in biomedical research and within the chemical industry is to understand the underlying mechanisms of complex disease, and complex adverse outcome pathways (AOPs). Based on a set of 28 steatotic chemicals with gene expression data measured on primary hepatocytes at three times (2, 8, and 24 h) and three doses (low, medium, and high), we identified genes and pathways, defined as molecular initiating events (MIEs) and key events (KEs) of steatosis using a combination of a time series and pathway analyses. Among the genes deregulated by these compounds, the study highlighted OSBPL9, ALDH7A1, MYADM, SLC51B, PRDX6, GPAT3, TMEM135, DLGDA5, BCO2, APO10LA, TSPAN6, NEURL1B, and DUSP1. Furthermore, pathway analysis indicated deregulation of pathways related to lipid accumulation, such as fat digestion and absorption, linoleic and linolenic acid metabolism, calcium signaling pathway, fatty acid metabolism, peroxisome, retinol metabolism, and steroid metabolic pathways in a time dependent manner. Such transcription profile analysis can help in the understanding of the steatosis evolution over time generated by chemical exposure

    Procedimiento post-síntesis de modificación de la superficie de nanopartículas superparamagnéticas de óxidos de hierro

    Get PDF
    La presente invención se refiere a un procedimiento post-síntesis de modificación de la superficie de nanopartículas superparamagnéticas de óxidos de hierro con grupos hidroxilo, sin espaciador, a las nanopartículas de superficie modificada obtenidas por el mismo, así como el uso de estas nanopartículas de superficie modificada en terapia, diagnóstico y en técnicas de concentración y separación de muestras químicas y biológicas.Peer reviewedUniversidad Pablo de Olavide Consejo Superior de Investigaciones Científicas (España)B1 Patente sin examen previ

    Serum albumin level as a risk factor for mortality in burn patients

    Get PDF
    OBJECTIVE: Hypoalbuminemia is a common clinical deficiency in burn patients and is associated with complications related to increased extravascular fluid, including edema, abnormal healing, and susceptibility to sepsis. Some prognostic scales do not include biochemical parameters, whereas others consider them together with comorbidities. The purpose of this study was to determine whether serum albumin can predict mortality in burn patients. METHODS: We studied burn patients ≥16 years of age who had complete clinical documentation, including the Abbreviated Burn Severity Index, serum albumin, globulin, and lipids. Sensitivity and specificity analyses were performed to determine the cut-off level of albumin that predicts mortality. RESULTS: In our analysis of 486 patients, we found that mortality was higher for burns caused by flame (p = 0.000), full-thickness burns (p = 0.004), inhalation injuries (p = 0.000), burns affecting >;30% of the body surface area (p = 0.001), and burns associated with infection (p = 0.008). Protein and lipid levels were lower in the patients who died (

    Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations

    Get PDF
    Drug-induced liver injury (DILI) cannot be accurately predicted by animal models. In addition, currently available in vitro methods do not allow for the estimation of hepatotoxic doses or the determination of an acceptable daily intake (ADI). To overcome this limitation, an in vitro/in silico method was established that predicts the risk of human DILI in relation to oral doses and blood concentrations. This method can be used to estimate DILI risk if the maximal blood concentration (Cmax) of the test compound is known. Moreover, an ADI can be estimated even for compounds without information on blood concentrations. To systematically optimize the in vitro system, two novel test performance metrics were introduced, the toxicity separation index (TSI) which quantifies how well a test differentiates between hepatotoxic and non-hepatotoxic compounds, and the toxicity estimation index (TEI) which measures how well hepatotoxic blood concentrations in vivo can be estimated. In vitro test performance was optimized for a training set of 28 compounds, based on TSI and TEI, demonstrating that (1) concentrations where cytotoxicity first becomes evident in vitro (EC10) yielded better metrics than higher toxicity thresholds (EC50); (2) compound incubation for 48 h was better than 24 h, with no further improvement of TSI after 7 days incubation; (3) metrics were moderately improved by adding gene expression to the test battery; (4) evaluation of pharmacokinetic parameters demonstrated that total blood compound concentrations and the 95%-population-based percentile of Cmax were best suited to estimate human toxicity. With a support vector machine-based classifier, using EC10 and Cmax as variables, the cross-validated sensitivity, specificity and accuracy for hepatotoxicity prediction were 100, 88 and 93%, respectively. Concentrations in the culture medium allowed extrapolation to blood concentrations in vivo that are associated with a specific probability of hepatotoxicity and the corresponding oral doses were obtained by reverse modeling. Application of this in vitro/in silico method to the rat hepatotoxicant pulegone resulted in an ADI that was similar to values previously established based on animal experiments. In conclusion, the proposed method links oral doses and blood concentrations of test compounds to the probability of hepatotoxicity

    Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models.

    Get PDF
    The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities. [Abstract copyright: © 2023. The Author(s).
    corecore