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Discovery of drug–omics associations  
in type 2 diabetes with generative 
deep-learning models

The application of multiple omics technologies in biomedical cohorts 
has the potential to reveal patient-level disease characteristics 
and individualized response to treatment. However, the scale and 
heterogeneous nature of multi-modal data makes integration and inference 
a non-trivial task. We developed a deep-learning-based framework, 
multi-omics variational autoencoders (MOVE), to integrate such data and 
applied it to a cohort of 789 people with newly diagnosed type 2 diabetes 
with deep multi-omics phenotyping from the DIRECT consortium. Using 
in silico perturbations, we identified drug–omics associations across the 
multi-modal datasets for the 20 most prevalent drugs given to people 
with type 2 diabetes with substantially higher sensitivity than univariate 
statistical tests. From these, we among others, identified novel associations 
between metformin and the gut microbiota as well as opposite molecular 
responses for the two statins, simvastatin and atorvastatin. We used the 
associations to quantify drug–drug similarities, assess the degree of 
polypharmacy and conclude that drug effects are distributed across the 
multi-omics modalities.

Drug-response patterns in individuals with complex disease, such as 
type 2 diabetes (T2D), are intricate. Multiple organs and confounders 
are typically involved including comorbidities and polypharmacy1,2. 
Conversely, treatment with one or more drugs and the associated poly
pharmacy effects can have considerable impact on the molecular profile  
of the individual; however, such changes are still largely unknown3. The 
increasing availability of deep phenotyping and multi-omics screening 
has proven to be beneficial in the characterization of T2D and other 
diseases4–7, and offer the opportunity to gain mechanistic insights on 
the action of drugs on disease processes.

Cohort studies can be highly useful for investigating associa-
tions between drugs and molecular phenotypes, and can be used to 
tailor the design of randomized control studies to assess direct causal 
relationships8. Common approaches to analysis of cohort data apply 
univariate statistical methods, linear and logistic regression, dimen-
sionality reduction and clustering analyses. However, when expanding 

to multi-omics data such analyses are not straightforward and tradi-
tional methods of data interpretation are insufficient to exploit the full 
scope of multi-modality data.

Here we investigate vertical data integration, where multiple omics 
datasets have been generated for the same samples. Challenges that 
must be overcome include integration of data across multiple con-
tinuous and discrete data modalities, efficient handling of missing 
data or even large missing parts of specific data types, differences in 
dimensionality, modality-specific noise and how to extract associations 
across data modalities9–11. There are several strategies for vertical inte-
gration of multi-modal datasets, such as element-wise addition of one 
dataset at a time, learning individual representations for each dataset 
before fusion, or multi-dimensional fusion where representations are 
learned from the input data altogether9,12–14. Examples are multi-omics 
factor analysis (MOFA), iCluster, and data integration analysis for 
biomarker discovery using latent components (DIABLO) implemented 
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had up to 24.7% missingness across the multi-omics data. For the clinical 
data missingness was higher with a per individual median of 14% and 7% 
for continuous and categorical clinical data, respectively. We designed 
the MOVE framework to be flexible in relation to the number of input 
data types and to be able to handle both continuous and categorical 
features (Fig. 1a). To identify the optimal hyperparameters that would 
capture the structure of the data without losing the ability to generalize 
on unseen individuals, we initially divided the dataset into training and 
test sets. We then measured the ability of the models to reconstruct the 
input as well as the stability when refitting the model to the data several 
times (Supplementary Figs. 2–4). The median reconstruction accura-
cies were between 0.95–1 and the final models were highly stable when 
retrained five times with average change of cosine similarities in the 
latent space of 0.037. Thus, the VAE models were able to reconstruct the 
data with high accuracy across the individuals (Supplementary Fig. 5).

The latent space contains important clinical signatures
To illustrate how well the model captured the structure of the clinical 
data, we analyzed the neural network weights connected to the input 
variables of the encoder. Here we found the majority of the clinical 
and dietary variables to be among the top 50 most important (Supple
mentary Fig. 6). This was also the case when we investigated how the 
continuous features impacted the positioning of the individuals in the 
latent space using a Shapley additive explanation (SHAP) analysis34,  
whereas for discrete features we found T2D-associated genetic variants 
as well as clinically related features to be important (Supplementary 
Fig. 7). Then, we investigated how individuals would be differenti-
ated by characteristics such as insulin sensitivity quantified by the 
Matsuda index (Fig. 1b). Here we found a trend of the Matsuda Index 
correlating with the two uniform manifold approximation and pro-
jection (UMAP) dimensions using Pearson’s correlation coefficient 
(PCC) of 0.34 and −0.35 for dimensions one and two, respectively. 
Using k-nearest-neighbor (kNN) regression on the latent representa-
tion we found that R2 for Matsuda Index (k = 5) was 0.70 compared to 
0.37–0.38 when using residualized data or dimensionality reduction 
using principal component analysis (PCA) and that this trend was con-
sistent for larger k (Supplementary Figs. 8 and 9). This indicated that 
the MOVE latent representation captured a clinical signal that was 
not as easily identified from the residualized data or by using PCA for 
dimensionality reduction. Furthermore, we did not find any strong 
local effects of missingness (R2 = 0.05 at k = 5) and only small effects 
of age (R2 < 0.01, k = 100). Similarly, we used a kNN classifier to inves-
tigate the effect of the confounders sex and recruitment center on the 
global structure of the latent representation. These achieved accura-
cies of 0.58 and 0.25 for sex and center, respectively, which should 
be compared to by-chance accuracies of 0.50 and 0.17, respectively 
(Supplementary Figs. 10 and 11). If we used non-residualized data, that 
is, when not correcting for confounding effects including age, sex, and 
center, we observed larger effects (Supplementary Figs. 10 and 11). 
This demonstrates the ability of the VAE to integrate heterogeneous 
data but also that substantial confounding factors can influence the 
latent representation.

Extracting drug to clinical and multi-omics associations
We then investigated if the model had learned associations between 
the clinical, drug and multi-omics data. To do this, we developed an 
approach that is based on perturbating input features one at a time 
(Fig. 1a). For instance, to identify associations between a particular 
drug and all other features, we simulated that we gave the drug to each 
of the individuals that did not receive the drug. In addition to exclud-
ing individuals that were already receiving the drug we also excluded 
individuals taking a drug of the same therapeutic drug-class in the 
anatomical therapeutic chemical classification (ATC) system (Supple-
mentary Table 2). We then assessed if the change in each of the feature 
reconstructions was significantly different compared to when passing 

in mixOmics, which can integrate multiple modalities11,14–16. However, 
these methods primarily focus on discovering factors or latent vari-
ables that can be used for visualization, clustering, or prediction of 
disease.

We have previously developed a deep-learning framework on the 
basis of variational autoencoders (VAE)17,18 for integration and bin-
ning of large amounts of unstructured metagenomics data19. Specifi-
cally, a VAE is based on deep neural networks and learns to transform 
high-dimensional data into a lower-dimensional space, termed a latent 
representation. During this process the two networks of the VAE learn 
the structure of input data and associations between the input vari-
ables. In our previous study, we found that the VAE could learn to inte-
grate two datasets without any prior knowledge or statistical model19. 
Similarly, others have shown the capabilities of VAEs as integrative 
models for extracting the underlying signal in data for improving clus-
tering and prediction12,20–23, as well as for handling large proportions of 
missing data24. We, therefore, speculated that such a model could be 
used to integrate even deeper cohort-level multi-omics datasets. While 
previous studies have primarily focused on stratifying patients using 
the underlying latent representation22,25,26 we were also interested in 
whether we could acquire insights into the complex relationships that 
the network learns through data integration.

For this purpose, we exploited that the decoder of the VAE is a 
generative model. Thus, the final trained decoder will be able to gener-
ate new examples of data from the learned latent distribution. On the 
basis of this principle, a variety of generative models have been used 
to generate new examples of data, such as single-cell RNA data and 
artificial human chromosomes27,28. Additionally, when combined with 
Bayesian decision theory they have been used for analysis of single-cell 
RNA data on the basis of variational inference29–31. Generative models 
also allow investigation of the effect that a virtual perturbation of the 
input data will have on the generated examples. For instance, Yeo et al. 
trained a generative model on single-cell RNA time-series data and then 
perturbed the input data to identify the effect of the perturbation on 
the output of the generative model32. Similarly, a recent study used 
the generative model of a VAE trained on protein evolutionary data to 
predict the effect that genetic variants have on the fitness of human 
proteins33. For our multi-modal data, we hypothesized that the genera-
tive ability of the VAE would allow us to identify associations between, 
for example, patient exposures and omics features.

We therefore developed a framework that is based on VAEs that 
we applied to a cohort of 789 people with newly diagnosed T2D with 
extensive multi-omics characterization. These modalities included 
genomics, transcriptomics, proteomics, metabolomics, and microbi-
omes as well as data on medication, diet questionnaires, and clinical  
measurements. Our method was able to integrate multi-omics data with 
clinical and categorical data and was resistant to systematic biases in 
the data as well as large amounts of missing data. Using an ensemble 
of generative VAE models, feature perturbation, univariate statistical  
methods, and Bayesian decision theory we identify cross omics asso-
ciations. We compared the drug multi-omics profiles and showed 
that different drugs are associated with unique clinical and molecular 
profiles. Our method, multi-omics variational autoencoders (MOVE) is 
freely available, easily scalable, can integrate any number of categorical 
and continuous datasets, and able to identify features to multi-omics 
associations.

Results
Designing a VAE for multi-omics data integration
We used a dataset of 789 newly diagnosed T2D individuals with exten-
sive multi-omics characterization (Supplementary Table 1). In total the 
data included 8,807 variables per individual with median missingness 
within an omics dataset of less than 5% except for metagenomics data 
where two thirds of the individuals (532) did not have any data (Supple-
mentary Data 1 and Supplementary Fig. 1). Therefore, these individuals 
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the original data through the model (Fig. 1a). Because VAE models are 
stochastic, we used results across an ensemble of models and devel-
oped two different approaches to identify significant associations. One 
approach was based on applying t-tests with Bonferroni correction 
across four different models, where each model was refitted 10 times 
(MOVE t-test), while we also, inspired by earlier variational work29–31, 
used Bayesian decision theory and a single model refitted 30 times 
(MOVE Bayes). To identify different parameters of the approaches that 
would allow for comparison across and to standard methods (t-test, 
analysis of variance (ANOVA)), we applied them to two datasets con-
sisting of randomized clinical, drug and multi-omics data. Our find-
ings showed that MOVE t-test and MOVE Bayes had good performance  
to identify drug–omics associations compared with t-test and ANOVA 

at a ground-truth false discovery rate (FDR) of 0.05 (Supplementary 
Fig. 12 and Supplementary Table 3 and Methods).

MOVE identifies drug and multi-omics associations
We then applied the MOVE framework to identify drug associations 
in the DIRECT multi-modal data. The two methods, MOVE t-test and 
MOVE Bayes, identified 3,143 and 763 significant associations to the 
multi-omics and clinical features, respectively (Supplementary Tables 
4–6 and Supplementary Data 2–4). We analyzed the intersection of the 
two approaches and found that 573 of the 763 (75%) of the significant 
associations were found by both methods (Fig. 1c). Making a conserva-
tive choice, we used the associations identified by both methods for fur-
ther analyses. When compared to traditional tests such as the Student’s 
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Fig. 1 | Integrating multi-omics data with a VAE. a, Principle of integration 
and analysis approach using MOVE. Individual-level non-omics and multi-omics 
data were used as input to a VAE. The optimal network hyperparameters were 
estimated from the summed test set error across all individuals in the test (test 
likelihood), training reconstruction accuracy, and model stability. Significant 
drug–omics associations were identified by perturbing drug status from no (0) 
to yes (1) for all individuals that were not already administered the drug. b, UMAP 
representation of the latent representation from the 789 people with newly 
diagnosed T2D. Individuals were colored according to their z-scaled Matsuda 
index from low (blue), average (yellow), and high (red). c, Overlap in significant 
drug–omics associations between standard t-test (two-sided, Benjamini–
Hochberg FDR < 0.01) on the input data, MOVE t-test (multi-stage Bonferroni-

corrected, P adjust < 0.05) and MOVE Bayes approaches (FDR Bayes < 0.05). The 
different methods of multiple testing correction corresponded to FDR of 0.05 
on the ground-truth dataset. The overlap between MOVE t-test and MOVE Bayes 
was used for further analysis (n = 573). d, The number of significant associations 
found between drugs and features in the multi-omics datasets using MOVE t-test 
and MOVE Bayes (purple), t-test (green) or ANOVA (orange). See c for information 
on the tests. e, Fraction of features in the multi-omics datasets that was found by 
MOVE to be significantly associated with at least one drug (n = 20). The lower and 
upper hinges correspond to the first and third quartiles. The upper and lower 
whiskers extend from the hinge to the highest and lowest values, respectively, but 
no further than 1.5× interquartile range from the hinge. Data beyond the ends of 
whiskers are outliers and are plotted individually.
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t-test and ANOVA we found this to add 211% more significant associa-
tions, from 184 to 573 (Fig. 1d). In addition, the significant associations 
identified by MOVE were distributed across the drugs (two-sided t-test, 
P = 0.016) and not only for the drugs administered to most individuals 
such as Simvastatin, Atorvastatin, and Metformin. For instance, MOVE 
identified a median of 20 associations per drug compared to 1 for t-test 
and 0 for ANOVA, highlighting that our method was more sensitive for 
extracting associations for drugs given to a smaller number of individu-
als (Supplementary Tables 5 and 6). Among the multi-omics datasets, 
we found that the largest number of significant drug associations was 
to the metabolomics, clinical, and transcriptomics data with an aver-
age of six associations per drug (Fig. 1e and Supplementary Fig. 13).  
When normalizing for all possible associations, the highest fraction 
of associations was to the clinical data (8%) followed by targeted  
and untargeted metabolomics with an average of 5.1% and 2.8% of the 
features associated to a drug, respectively. Finally, we investigated if 
our results could be driven by disease subtypes within the T2D cohort. 
To do this, we used four archetype clusters from Wesolowska–Andersen 
and Brorsson et al.7 that were based on clustering from 32 clinical 

features. Here we found that a median of 6.5% of the significant drug–
omics associations were specific to one of the subgroups indicating  
that the associations were not primarily driven by the archetypes  
(Supplementary Table 7).

Changes in T2D biomarkers were associated with metformin
We then investigated drug and multi-omics interactions (Fig. 2a and 
Supplementary Figs. 14–18), and initially focused on expected clinical  
drug interactions. For instance, for metformin, we identified 88 sig-
nificant clinical and multi-omics interactions across all the datasets. 
When investigating associations across the individuals we found low 
intra-patient variability indicating that the changes were stable (Fig. 2b 
and Supplementary Fig. 19). We found that metformin was significantly 
associated with 12 clinical markers of T2D such as insulin clearance, 
active GLP-1, glucose levels from mixed-meal glucose tolerance test, 
glucose sensitivity, and blood pressure (Fig. 2a and Supplementary 
Data 2–4). The directions of some of the associations were opposite 
to the expected metformin effects, that is, metformin was associated 
with decreased glucose sensitivity at baseline (average Z-score change 
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Fig. 2 | Significant associations between drugs, clinical, and multi-omics 
features. a, Significant associations between drugs and clinical features. 
Effects are given as effect size (z-scaled units) from negative (blue) to positive 
(red). Significant associations identified by both MOVE t-test and MOVE Bayes 
are indicated using a star. Features (y-axis) and drugs (x-axis) are clustered 

using hierarchical clustering on the basis of Euclidean distances. b, As in a but 
showing per individual-level associations of metformin to multi-omics features 
demonstrating that associations are highly stable across individuals. Features 
(y-axis) and newly diagnosed T2D individuals (x-axis).

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01520-x

−0.029, confidence intervals [−0.030, −0.029]). This could be due to 
confounding by indication in terms of the study design where newly 
diagnosed T2D individuals that have been prescribed metformin 
are expected to have more severe clinical T2D values compared to 
individuals not needing medical treatments35,36. Therefore, since all 
individuals have T2D the confounding effect of their diabetic status 
could not be disentangled from the effect of metformin. When inves-
tigating the multi-omics associations of metformin we found two of 
the seven associated proteins (ERAP2 and CD40L) could be linked to 
the immune system (Fig. 3a and Supplementary Data 4). Similarly, for 
the transcriptomics data we found CXCL8 and CD177 to be altered by 
metformin where the former has been shown to be altered in healthy 
individuals and cancer patients37–39. In the targeted metabolomics data 

we identified a significant enrichment of metabolites associated with 
aminoacyl-tRNA biosynthesis (hypergeometric test, P = 2.2 × 10−4, FDR 
corrected). This pathway has previously been associated with met-
formin in functional pathway analysis of microbial change in mice40. 
Finally, for the untargeted metabolomics data, metformin had the 
highest number of associations of any drug (22 associations) indicating 
that new metabolic effectors of metformin treatment could potentially 
be identified (Supplementary Fig. 17 and Supplementary Table 4).

Association of metformin and omeprazole with gut 
microbiota
Recent studies have shown how drug intake can influence the human 
gut microbiome composition41,42. Here we found metformin and  
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Fig. 3 | Drug associations with metagenomics species and drug–drug 
similarities. a, Display of effect sizes (z-scaled units) for (outer to inner) 
metformin, simvastatin, atorvastatin, omeprazole, lansoprazole, paracetamol, 
and codeine. Only significant associations to any of the drugs are shown and 
effect size is visualized as brown (negative), gray (none), and green (positive). 
Selected omics features are indicated. The Gene Ontologies element represents 
significantly over-represented Gene Ontology terms using transcriptomics 
(hypergeometric test, FDR < 0.05) (green). The innermost ring indicates SHAP 
importance for the individual features in the encoding from input data to the 
latent representation. b, Effect size (z-scaled units) (x-axis) of the human gut 
metagenomics species that were significantly associated with metformin 
(orange) or omeprazole (teal). c, Drug–drug similarities by comparing 
drug-response profiles across the multi-omics datasets. Cosine similarity 

indicated from no similarity (blue) to identical profiles (red). d, Average effect 
(z-score) of drugs for the omics datasets. All 20 drugs are shown, however, only 
metformin (red), omeprazole (purple), atorvastatin (green), and simvastatin 
(blue) are indicated. All other drugs are colored gray without a text label. 
e, Distribution of multi-omics ranks for the different drugs. The ranks are 
determined as a number between 1–20 (drugs) on the basis of the average effect 
size from d. The boxes are colored according to number of individuals taking a 
particular drug from 0 (white) to 323 (purple). There was no correlation between 
rank scores and number of individuals taking a drug (PCC = 0.14). The lower and 
upper hinges correspond to the first and third quartiles. The upper and lower 
whiskers extend from the hinge to the highest and lowest values, respectively, but 
no further than 1.5× interquartile range from the hinge. Data beyond the ends of 
whiskers are outliers and are plotted individually.
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omeprazole to be the only drugs to have significant associations  
to the metagenomics data with an increase of eleven metagenomics 
species as well as a decrease of six other species (Fig. 3b). Remark-
ably, the findings of increased Escherichia coli and decreased levels 
of Intestinibacter bartlettii and Peptostreptococcaceae sp. have been 
reported in healthy individuals taking metformin in an intervention 
study43 (Supplementary Data 4). As the study first reporting the findings 
was performed in healthy individuals, the changes are most likely not 
explained by other factors than metformin treatment. For omepra-
zole, a protein pump inhibitor (PPI), we identified three Streptococcus 
species to be significantly increased (Streptococcus sp., Streptococcus 
parasanguinis, and Streptococcus vestibularis) (Supplementary Data 
4). Previous work by others has specifically shown PPIs to influence 
the abundance of Streptococcus parasanguinis and vestibularis in 
the human gut44. Interestingly, both omeprazole and lansoprazole 
target the K-transporter ATPase alpha channel 1 and increases pH in 
the stomach. The two drugs, however, have different speed to effect 
rates where omeprazole elicits its effect with a slower rate compared 
to lansoprazole45. This, in combination with more individuals being 
administered omeprazole (125) compared to lansoprazole (57), could 
explain why we identified significant alterations of gut microbiota for 
omeprazole and not lansoprazole.

Statins were associated with decreased low-density 
lipoprotein and cholesterol
Next, we investigated associations between the two statins, simvastatin, 
and atorvastatin, which are widely used to treat high blood choles-
terol by lowering low-density lipoprotein (LDL)46. In agreement with 
their potential to treat dyslipidemia, we found both LDL and overall 
cholesterol levels to be significantly associated and decreased with 
average LDL z-score change of −0.039 (CI [−0.040, −0.038]) and −0.015 
(CI [−0.016, −0.014]) for simvastatin and atorvastatin, respectively 
(Supplementary Data 4). This effect could be a consequence of many 
of the participants having been administered statins before their T2D 
diagnosis (simvastatin median duration 1.9 years and atorvastatin 
median duration 1.7 years; Supplementary Table 8), thereby increasing 
the chance of observing the effect of the drug with reduced confound-
ing by indication. Interestingly, we noticed that besides the down-
regulation of LDL and general cholesterol levels some of the remaining 
clinical associations were not similar. Simvastatin was associated with 
an increase in the health marker high-density lipoprotein (HDL) cho-
lesterol whereas atorvastatin had a decrease. This agrees with known 
effects of the two statins on HDL, where simvastatin and atorvastatin, 
respectively, increase and decrease HDL levels with increasing doses47.

Different molecular profiles of simvastatin and atorvastatin
When investigating the multi-omics associations, the two statins had 
diverse effects across the omics data (Fig. 3a and Supplementary Figs. 
14–18 and 20). In agreement with the analysis of the clinical data, we 
found simvastatin to be significantly associated with downregulation 
of cholesterol homeostasis (Hypergeometric test, P = 0.005, FDR) and 
lipid transportation pathways (Hypergeometric test, P = 0.002, FDR) 
from the enrichment analysis of the associated transcripts (Fig. 3a 
and Supplementary Data 4 and 5). Specifically, we identified changes 
in LDLR, SREBF2, ABCA1, and ABCG1 expression, previously associated 
with simvastatin usage and accumulation of fatty acid and triglyceride 
in the liver through different pathways48–52 (Supplementary Data 4). In 
the proteomics data of atorvastatin, we identified known associations 
to FADS1 (ref. 53), as well as EIF2AK3, which has been reported associ-
ated with cholesterol homeostasis54,55. Additionally, two insulin growth 
factor binding proteins (IGFBP1 and IGFBP4) were associated with ator-
vastatin and IGFBP4 for simvastatin as well (Supplementary Data 4). 
These have previously been reported specifically for people with T2D 
and atorvastatin use54,56. Finally, in the targeted metabolomics data, 
we identified simvastatin to be associated with an increase in glycine 

levels, which in low systemic concentration has been associated with 
obesity and T2D57 (Supplementary Data 4). Furthermore, we observed 
a decrease of several phosphatidylcholines (11 of 17 decreased metabo-
lites), and an increase of sphingomyelin and ceramide (2 of 11 increased 
metabolites), a ratio which has previously been shown to be altered with 
high doses of simvastatin compared to other statins58 (Supplementary 
Data 2–4). For atorvastatin, we observed a non-significant decrease of 
glycine levels and that the overall ratio of sphingomyelin and ceramide 
decreased (4 of 13 decreased metabolites).

Drug polypharmacy and similarity across multi-omics data
We then investigated similarities between drugs and their multi-omics 
associations. Overall, we observed four clusters containing three to 
six drugs each and found that some of the drugs within a cluster could 
potentially be associated with polypharmacy (Fig. 3c). Therefore, we 
investigated the impact of a drug–drug combination on the associa-
tions and found a correlation between overall drug association simi-
larity and the individuals taking the two drugs (PCC 0.75, P value of 
2.2 × 10−35). This finding indicates possible polypharmacy effects intro-
duced by taking the two drugs together resulting in a higher drug–drug 
similarity across all clinical and multi-omics changes. However, some of 
the similarities might to some extent be driven by overlapping patient 
groups and non-drug-related similarities such as the underlying reason 
for taking the drug. An example could be the drug similarity cluster of 
Ramipril, Acetylsalicylic Acid, Bisoprolol, Amlodipine and Atorvasta-
tin, which can be linked to cardiovascular diseases. Furthermore, the 
drugs that had the most similar drug and multi-omics associations were 
codeine and paracetamol with a cosine similarity of 0.78. Most (38 of 46)  
of the individuals in the cohort taking codeine were also taking paracet-
amol while a large fraction of individuals (52 of 90) was only taking par-
acetamol. We therefore cannot rule out that the correlated multi-omics 
profiles of the two drugs could be driven by the partial overlap leading 
to similar latent representation and model reconstructions. Finally, 
we investigated known drug–drug interactions and association with 
drug multi-omics profiles; however, found no statistically significant 
correlations (Supplementary Note and Supplementary Fig. 21).

The effects of drugs are widespread across the omics data
Currently, there are widespread efforts in investigating drugs and gut 
microbiome interactions suggesting that the microbiome is a potential 
target and mediator of drug effect42,59,60. As we investigated several 
multi-omics datasets besides the gut microbiome (metagenomics), 
we can compare the effect size of the drugs across the omics datasets. 
Interestingly, we found that the gut microbiome was the dataset with 
the second fewest number of statistically significant hits across the 
drugs with 17 significant associations (Supplementary Table 4 and 
Supplementary Fig. 13). Only diet and wearable data had fewer asso-
ciations (11); transcriptomics, proteomics, targeted, and untargeted 
metabolomics had between 44–134 significant associations. We then 
asked if the effect size of the drugs were different across datasets and 
determined the cumulative effect size of the drugs in the respective 
multi-omics datasets. Here we found that the average effect sizes in 
transcriptomics and metagenomics data were the lowest for all drugs, 
and that those in the metagenomics dataset were significantly lower 
compared to all other omics datasets but transcriptomics (ANOVA, 
Tukey HSD test, adjusted P < 0.05) (Fig. 3d and Supplementary Table 9).  
When we subset to significant drug–omics associations, of which 
the gut microbiome only had two drugs with significant associations 
(metformin and omeprazole), we found that the effect of these two 
drugs were similar or lower compared to the effect sizes of the other 
multi-omics datasets (Supplementary Fig. 22). Finally, we investigated 
if this could be caused by increased uncertainty when learning and 
reconstructing a given modality but only found small correlations with 
PCCs of −0.15 to 0.16 between modality uncertainty and inferred effect 
sizes in a modality (Supplementary Table 10). Overall, this observation 
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implies that the multi-omics response to drug stimuli are not only  
targeting the gut microbiome and that multiple omics datasets should 
be included when attempting to understand drug effects.

Ranking the impact of drugs in multi-omics data
Finally, we investigated the effect sizes of the individual drugs across 
the multi-omics datasets. We found that metformin and omeprazole, 
in general, had the most pronounced effects on the multi-omics data 
(cumulative rank scores) and that the two statins ranked 14 and 20 out 
of the 20 drugs (Fig. 3e) where simvastatin had the lowest overall rank 
of cumulative effect sizes. This analysis was not confounded by the 
number of individuals taking a particular drug as there was no correla-
tion (PCC = 0.14) between the number of individuals and drug effect. 
This was opposed to when investigating only significant associations 
where statins ranked 2 and 4 with high effect sizes (Supplementary 
Figs. 22 and 23). This observation may indicate that statins had fewer 
strong effects, whereas, for instance, both metformin and omeprazole 
with the highest average rank had larger systemic effects.

Discussion
Here we show that it is possible to use unsupervised deep learning to 
integrate and extract associations from a deeply phenotyped cohort 
of people with T2D. While existing methods for vertical integration 
of multi-omics data focus on encoding the data to factors or latent 
representations that can be used for clustering and classification, we 
took this further by using the generative capacity of VAE models. In 
comparison to traditional univariate statistical tests, MOVE can identify 
significant drug–omics associations for a wider selection of drugs. We 
believe that these improvements come from the ability of the genera-
tive models to infer multi-omics changes for individuals not receiving 
a drug thus increasing power.

Previous work to stratify the newly diagnosed T2D individuals 
from this cohort used 32 clinical features to identify four archetypes 
representing different T2D subtypes7. In addition, they used met-
formin status of the individuals to investigate if the subgroups were 
confounded by metformin treatment and found no significant impact 
on the clusters and their multi-omics correlations. In contrast to their 
work, we added medication data on 19 additional drugs and used all 
data as input to our unsupervised deep-learning model allowing the 
model to learn from all inputs simultaneously. Thus, we were able to 
identify associations between the drugs and multi-omics data, includ-
ing for metformin indicating the importance of vertical integration.

The cross-sectional design and clinical data-guided medical deci-
sions make it difficult to assess the directionality of drug associations 
and further complicates causal inference. Hence, it is not possible to 
draw causal conclusions on drug effects; however, the results can be 
considered as input to design informed studies as well as randomized 
clinical control studies. In the future, expansion with longitudinal 
multi-omics data and modeling time could add more information on 
the causality of the drugs by investigating the long-term effects and 
associations32.

Similarly, our approach opens up for individualized analysis of 
patients in an N-of-1 approach61. It is well-known in health care that often 
selecting a drug or treatment in a situation at the same time excludes 
performing the control experiment of using another drug. Using MOVE, 
we can in principle ask what would happen if we gave the patient a drug 
and compare to the result of choosing another drug. Our cohort size 
is limited, but for larger cohorts of tens to hundreds of thousands of 
patients this could potentially be powerful to identify molecular asso-
ciations and treatment outcomes for individual patients.

Finally, we emphasize that our approach is, of course, not limited 
to drug associations; in principle, all the omics data could be assessed 
for associations across the datasets. We therefore believe that our 
generative method opens new possibilities in big multi-omics data 
analysis for discoveries of potential new biomarkers, carrying out 

gedankenexperiments, and investigating potential direct effects of 
drugs in high dimensionality molecular data that leads to testable 
hypotheses.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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Methods
The cohort
The cohort and available data included in the study are described 
in detail in Koivula et al.62,63 and Wesolowska–Andersen and Brors-
son et al. (ref. 7). In brief, we used the newly diagnosed sub-cohort 
of the IMI-DIRECT study consisting of 789 participants. Fifty-eight 
percent of participants was male and participants had the following 
characteristics at baseline: age 62 (8.1) years; body mass index 30.5 (5.0) 
kg m−2; fasting glucose 7.2 (1.4) mmol l−1; 2 h glucose 8.6 (2.8) mmol l−1. 
Participants were diagnosed within 2 years before recruitment and 
had glycated hemoglobin (HbA1c) < 60.0 mmol mol−1 (<7.6%) within 
the previous 3 months. All samples represent distinct individuals. 
Furthermore, while Wesolowska–Andersen and Brorsson et al.7 used 
data from baseline and follow up at 18 and 36 months we only used 
baseline data for modeling. In addition to the baseline data from Weso-
lowska–Andersen and Brorsson, we carried out extensive curation and 
harmonization of the medication records included in the electronic 
case forms by the research nurses in the different recruitment cent-
ers and thus used standardized ATC annotated medication data for 
the individuals (see further detail below). Approval for the study pro-
tocol was obtained from each of the regional research ethics review 
boards separately (Lund, Sweden: 20130312105459927; Copenhagen, 
Denmark: H-1-2012-166 and H-1-2012-100; Amsterdam, Netherlands: 
NL40099.029.12; Newcastle, Dundee, and Exeter, UK: 12/NE/0132) 
and all participants provided written informed consent at enrollment. 
The research conformed to the ethical principles for medical research 
involving human participants outlined in the declaration of Helsinki. 
Further details about the data generation can be found in Wesolowska–
Andersen and Brorsson et al.7.

Pre-processing of data
From the clinical, environmental, and questionnaire data only variables 
with variation across the dataset that were present in at least 10% of 
the individuals were included. The genomic data was included as the 
genotypes of risk alleles identified in Mahajan et al.64. In total 393 risk 
alleles were identified in our cohort out of the 403 associations men-
tioned in the paper. The genotypes were included as homozygous for 
risk allele, heterozygote, not having the allele, or missing if the locus 
was not identified for the individual. Diet data was included as 47 
features on self-reported total intake of macronutrients and vitamins 
across a 24-h period. The wearables measured with an accelerometer 
included 25 measurements that summarize the movement and heart 
rate during the day. Transcriptomics data (RNA sequencing) from  
fasting whole blood samples were processed with RailRNA (v0.2.4b)65 
to obtain scaled counts for all samples and only the most variable 
genes were included. The variable genes were selected by calculat-
ing the standard deviation across all individuals for each gene and  
selecting genes with an above-average standard deviation. Both 
targeted and untargeted metabolomics data in fasting plasma were 
included for all measurements passing quality control. In the prot-
eomics data, all measurements within the measurable range based on  
the OLINK antibody panel were included and residualized for plate 
layout. The metagenomics data was only available for approximately 
one-third (256) of the individuals and were included as normalized read 
counts of identified Metagenomic Species66. Categorical data, includ-
ing questionnaire responses, drug data, and genomics, was one-hot 
encoded. The continuous data were residualized by the collection 
center as the data was collected from six different European countries 
and, thus, handled by different nurses and lab technicians, as well as 
differences in the time-of-day samples were taken, which could have a 
large effect on the measurements. Additionally, the data were residual-
ized for age and sex as these could be biological non-disease-related 
confounders in the data. Lastly, each continuous dataset was z-scale 
normalized per feature to ensure that each feature was distributed 
around zero.

Classification of drugs using the ATC system
The ATC system is the WHO classification system for therapeutic 
drugs. The system has a hierarchical structure, where the topmost 
level, ‘level 1—Anatomical main group’, specifies the target organ or 
tissue, and the lowermost level, ‘level 5—chemical substance’, specifies 
the active chemical compound. The three levels in between specify 
the therapeutic, pharmacological, and chemical levels, respectively. 
We, therefore, mapped all drugs to the lowest possible level to prevent 
information loss. A total of 4,155 entries could be mapped to level 5. For 
55 entries, only a higher-level mapping was possible owing to lack of 
specificity and 43 entries could not be mapped to the ATC system, either  
because of the compound not existing in the database, for example 
nutraceutical compounds, or when we were unable to identify which 
drug was registered for the participant. The ATC system does not  
only specify compound names, but also administration route and 
daily dosages for over half of level 5 entries. However, owing to uncer-
tainty of the reliability of the registered dosages, only drug names 
and administration routes were used for mapping. In instances where 
the administration route was not available, the drug was mapped by 
drug name only.

Drug data collection and clean-up
The study participants were asked to register their current drug usage 
at screening and baseline. Drug names were registered as free text 
together with administration route, dosage and frequency, and indica-
tion. Metformin was recorded separately from other anti-diabetic and 
non-anti-diabetic drugs. The collected data was variable in quality,  
using both generic and brand names, which were in many cases specific  
to the country of the participant. The data was cleaned in four steps: 
(1) removal of special characters, company names, formulations, 
and other non-relevant information; (2) automatic mapping to the 
PubChem database; (3) manual mapping to generic drug names; and 
(4) mapping to the ATC system. Indications of placebo use, for example 
participation in clinical drug trials, were noted as such. Only active 
compounds were included and consequently, possible brand variation 
was ignored, including for dietary supplements. Drug combinations 
were mapped, when possible, to the ATC code specifying said combi-
nation. However, when the specificity of the proposed ATC code was 
less specific than the registered drugs, the drug combinations were 
mapped to individual ATC codes, that is, ‘Perindopril’ (C09AA04) and 
‘Indapamide’ (C03BA11) was used instead of ‘Perindopril and diuretics’ 
(C09BA04). Entries were mapped to ATC codes with the administration 
route when possible and otherwise mapped without the administration 
route. Dosage information was not used in the mapping process. In the 
manual mapping process, 99.4% of terms were assigned and a total of 
359 drugs and drug combinations were identified. A total of 339 drugs 
(94.4%) was mapped to 441 ATC codes.

Design of the VAE
The VAE framework was constructed to account for a variable number 
of fully connected hidden layers in both the encoder and decoder and 
a latent layer that samples from a Gaussian distribution N(0, 1) of two 
vectors of size NL representing the means, µ, and standard deviations, σ.  
Each hidden layer included both batch normalization and dropout67 
and with leaky rectified linear units (LeakyReLU)68 as activation func-
tion. Each dataset was concatenated to one input layer of both categori-
cal and continuous variables. To allow for dataset-specific weights the 
error calculation was done separately for each dataset. Here we applied 
cross-entropy loss for categorical data and mean squared error for 
continuous data as implemented in PyTorch69. The loss was normal-
ized by dataset input size and batch size. Deviance from the Gaussian 
distribution was penalized by adding the Kullback–Leibler divergence 
(KLD) to the loss. The final loss was defined as

L = Wcat × Ecat +Wcon × Econ +WKLD × KLD
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Here, Ecat and Econ are vectors of normalized reconstruction 
error for each of the continuous and categorical datasets. Wcat and 
Wcon are vectors as well of the same length as the errors to introduce 
dataset-specific weights. We applied an equal weight of 1 for all datasets 
except for continuous clinical data where we used a weight of 2. WKLD 
is a weight put on the KLD defined as WKLD = β × NL

−1 for which we used  
a β of 0.0001 for the final model. The KLD was defined as

KLD = ∑− 12 (1 + ln (σ) − μ2 − σ)

To efficiently handle missing data for the continuous features we 
encoded them as mean values across a particular feature during training  
and excluded the missing data points during back-propagation. With 
the data being z-score normalized the mean value is represented as zero.  
For the categorical features, we included them as a zero vector and the 
ignore index feature in the cross-entropy implementation in PyTorch 
was used to not include errors for missing data in the back-propagation. 
The VAE model was trained with the Adam optimizer70, with a mini-batch 
size of 10 and increasing batch size with a factor of 1.25 during training  
after every 50 epochs. The number of training epochs was set to 200 on  
the basis of early stopping on the test set as described below. Additionally,  
we trained the model using warm-up by first including the full KLD after 
10 epochs slowly increasing the weight at epochs 4, 6, and 8. The latent 
representation of each patient was obtained by passing them through 
the trained VAE and extracting the µ layer. The VAE was implemented 
using PyTorch69 (v.1.7.0) and run using a GPU running CUDA (v.10.2.89).

Hyperparameter optimization for multi-omics integration
We initially divided the dataset into training (90%) and test (10%) sets to 
identify the optimal hyperparameter settings to efficiently capture the 
data structure without losing the ability to generalize on the test data 
(Supplementary Figs. 2 and 3). We tested different combinations of 
sizes of hidden layers, the number of hidden layers, size of latent space, 
dropout, and weight on the KLD. We then evaluated the model on the 
basis of both test log-likelihood and reconstruction accuracy. For the 
number of hidden neurons, the variations used were 200, 500, 800, 
1,000, and 1,200, with the number of layers ranging between 1 and 5. The 
tested latent sizes were between 20 and 400 as well as dropout of 10%, 
20%, and 30% and KLD weights of 0.001, 0.0001, and 0.0001. We defined 
an accurate reconstruction for categorical variables as the class with 
the highest probability corresponding to the class given by the input. 
For continuous variables, the accuracy was assessed by comparing the 
reconstructed array with the input array using cosine similarity for each 
individual instead of using exact matching. For both categorical and 
continuous data only non-missing values were used when calculating 
the accuracy in the reconstruction. We chose the number of training 
epochs on the basis of when the optimal test likelihood was achieved 
during testing rounded up to the nearest 100 epochs to ensure sufficient 
training to learn the complexity of the data. Here we found that more 
complex models, with higher numbers of hidden neurons and layers, 
resulted in worse performance on the test set (Supplementary Fig. 2) and 
that models with more than one hidden layer were unable to provide a 
decent reconstruction on the training data without overfitting. The only 
exception was the size of the latent representation, which gave a worse 
performance with smaller sizes (<50) and equally good performance for 
larger sizes (from 100 to 400) (Supplementary Fig. 3). For the five best 
performing models, stability was measured to choose the final model. The 
stability of the model was evaluated by repeating training with the same 
hyperparameters and calculating the difference in cosine similarity of 
the latent space to all other individuals. If the model produced the same 
result the average change in cosine similarity should be zero. The model 
with the average change closest to zero was then considered the most 
stable. The final hyperparameters were set to be one hidden layer of 2,000 
neurons, a latent size of at least 100, and a 10% dropout for regularization.

Evaluating feature importance
Feature importance was extracted from the weights of the network for 
the models with only one hidden layer and because the input data was 
z-score normalized calculated as

Ii =
nhidden
∑
j=1

||wij||

where Ii is the ith feature input and ||wij|| is the absolute value of the weight 
from ith input to the jth hidden neuron. To assess the actual impact on 
the latent representation an adaptation of the SHAP19 analysis was 
applied. The difference in model performance was assessed as the abso-
lute differences of the latent representation when changing each input 
to missing for all individuals and passing it through the trained model.

Extracting significant drug associations
Drug associations were extracted by perturbation of the input data 
after training the final model on all individuals. Thus, for each drug we 
changed the drug status for all individuals with ‘not receiving’ to ‘receiv-
ing’. Importantly, we only included individuals that did not receive the 
specific drug or another drug within the same therapeutic subgroup 
(ATC level 2). Then, for each drug change, we compared the change in 
reconstructions to when we passed the original (un-perturbed) data 
through the network. In other words we determined the differences 
that the network infers from the change in drug status that during train-
ing was learned from all individuals receiving the drug. We used two 
strategies for this, one was based on an ensemble of Student’s t-tests 
using benchmarked thresholds, and another was based on Bayesian 
decision theory. Both approaches were benchmarked against rand-
omized datasets where all the input data matrices were shuffled on rows 
and columns. We simulated effects in the shuffled data by randomly 
sampling a combination of a drug, a multi-omics dataset, and a feature 
within that omics dataset. For each combination, we then sampled 
an effect from the standard normal distribution N(0,1) and added 
this value to the omics feature whenever the selected drug was taken 
by an individual. We, therefore, did not expect that all effects would 
be significant in the statistical tests because we sample from N(0,1) 
and some effects will be close to 0. We added a total of 100 effects to 
the shuffled data and repeated the entire procedure to generate two 
shuffled datasets each with their unique added effects. Additionally, 
we investigated if the number of significant associations, effect size 
estimates and model uncertainty in the reconstruction were not biased 
by individual dataset uncertainties. This was done by calculating PCCs 
between the average estimated effect size across all 20 drugs and the 
difference between model input and the reconstructions for each of 
the omics features.

Significant associations using MOVE t-test
To evaluate if the change in the reconstruction was significant, we first 
determined the expected average change when passing the original 
and perturbed data through the model ten times. On the basis of these 
averages, we used a Student’s t-test for related samples as implemented 
in Python SciPy (v.1.3.1)71 between the baseline and drug-perturbed data 
for all non-missing continuous data. All P values were subsequently 
Bonferroni-corrected independently for each drug, and we applied 
a significance threshold of adjusted P < 0.05. We repeated the entire 
analysis with retraining of the model 10 times for each of four latent 
sizes (150, 200, 250, and 300). Associations were only included for 
analysis if they were significant for at least three of the four latent 
sizes and in at least five out of ten of the repeats. Therefore, reported 
P values were the averaged P value across the 10 replicate and 4 model 
tests, that is a total of 40 two-sided Bonferroni-corrected t-tests. The 
change in reconstruction, what we report as effect size, was calculated 
as the average difference across the 10 replicates and 4 model tests and 
were reported with 95% confidence intervals.
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Significant associations using Bayes decision theory
For the method that was based on Bayesian decision theory we used 
an approach inspired by single-cell variational inference29 and Lopez 
et al.31. We trained VAE models with a latent size of 150 neurons and 
benchmarked the approach using different latent sizes and ensembling 
1, 5, 10, 20, 30, 35, 40, or 50 models, which we termed refits. For the 
refits we averaged the reconstructions and used these to obtain the 
posteriors for the non-perturbed data and each of the drug perturba-
tions. Thus, for VAE ensemble refit i, individual n, feature f, and drug d 
we define the variational reconstructions as x̂infd. By averaging across 
VAE refits, we obtain estimates of the average posteriors x̂nfd. Then, for 
each drug d we compare between two models: Mf

d where feature f is 
significantly associated with the drug, and the alternative model Mf

0 
where feature f is not significantly associated with drug d. Hence, we 
evaluate how often ||x̂nfd − x̂nf0|| > 0 and calculate Bayes factors (K) as:

K = loge
|
|
|
|

P (Mf
d|x̂fd, x̂f0)

P(Mf
0|x̂fd, x̂f0)

|
|
|
|

We ranked the associated features according to K (ref. 72). We set 
a FDR of α by accepting associations (n) between features and a drug 
until the cumulative evidence of P(M0) across accepted features for  
the drug was above the threshold. Since P(Mf

0) = (1 − P(Mf
d)) we accepted 

drug-feature associations while the cumulative evidence E is lower  
than α

E = ∑
f

(1 − P(Mf
d))

n < α

Benchmarking of t-test, MOVE t-test and MOVE Bayes
To be able to compare the number of significant associations between 
methods we used the two randomized datasets to estimate FDR from 
the ground truth, that is the added drug–omics effects (Supplementary 
Table 3). Here we found that a t-test with Benjamini–Hochberg FDR of 
0.01 had ground-truth FDR of 0.00 and 0.06 on the two randomized 
datasets, corresponding to 52 and 67 true positives as well as 0 and 4 
false positives, respectively. For MOVE t-test, we benchmarked the num-
ber of refits of the 4 models and found 10 refits to have a ground-truth 
FDR of 0.02 and 0.06, with 48 and 61 true positives as well as 1 and 3 false 
positives, respectively. For MOVE Bayes we benchmarked the number 
of refits for a model with 150 latent neurons and found FDR from the 
cumulative evidence to be well aligned with FDR of the ground truth. 
Using Bayes FDR of 0.05 we found 30 refits to have ground-truth FDR of 
0.02 and 0.05, respectively. Across the two shuffled datasets 42 and 59 
true positives were found by all three methods (Supplementary Fig. 12).

Calculation of drug associations using other methods
We compared our findings to associations identified with standard 
statistical approaches using Student’s t-test for unrelated samples and 
an ANOVA between two groups of individuals ‘not receiving’ and ‘receiv-
ing’ each drug. Here we used Benjamini–Hochberg correction for FDR73 
with an adjusted P < 0.01. Additionally, we tested if a least absolute 
shrinkage and selection operator (LASSO) model was able to identify 
features with significant impact on predicting the ‘not receiving’ or 
‘receiving’ groups for each drug. However, the LASSO model was unable 
to converge possibly owing to the high input feature dimensionality. 
All statistical tests were done with Python SciPy (v.1.3.1)71.

Drug effect size and similarities across omics data
Drug effect sizes were determined as the difference between the base-
line and drug-perturbed variational reconstructions, that is, as the 
average difference across the VAE ensemble refits reported with 95% 
confidence intervals. Drug similarities were calculated as the cosine 

similarity as implemented in Python SciPy (v.1.3.1)71 between the aver-
age effect sizes on all features identified as significantly associated 
for at least one of the drugs both across and within each dataset. The 
difference was only calculated for non-missing data and individuals not 
already on the drug or a drug in the same ACT group. The rank of drug 
effect sizes was determined for each omics dataset ranking the effect 
sizes from 1 to 20. A rank of 20 indicates that the drug had the highest 
average effect size in this omics dataset compared to the other drugs. 
Correlations between multi-omics profiles and number of individuals 
taking the drug pair were calculated from the fraction of individuals 
that overlapped between the two drugs.

Molecular-focused analysis of the multi-omics data
To get a better understanding of the molecular profiles identified in the 
associations for the transcriptomics and proteomics data we tested for 
enriched Gene Ontology terms as well as molecular pathways. For the 
transcriptomics data, we assessed the molecular patterns of biological 
processes and pathways from Reactome74 (v.3.7) using the significantly 
associated genes for each drug against a background list of all genes 
included in the data integration. We used WebGestaltR75 (v.0.4.4) for 
the analysis with default settings (hypergeometric test) and evaluated 
all results with an FDR < 0.05. The targeted metabolomics data was 
analyzed for potential metabolite enrichments using MetaboAnalyst76 
(v.5) over-representation analysis using a hypergeometric test and 
FDR of 0.05. We investigated both enrichments in known pathways in 
the KEGG database as well as enrichment of chemical structures sub-, 
main- and super-class levels. For all analyses, we used the included 
panel of targeted metabolites as the reference data.

Association differences within diabetes archetypes
As mentioned, previous work by Wesolowska–Andersen and Brorsson  
et al. performed archetype analysis of the multi-omics data with only 
metformin medication data7. Here they based the archetypes on clini-
cal markers and identified four distinct and one ‘mixed’ T2D arche-
types with clinical and omics profiles. To investigate if these distinct ar 
chetypes differed in their drug associations we used a t-test on the  
average effect size change for the individuals of each archetype against 
the remaining individuals. The analysis was only done for the significant 
drug associations for each drug. All analysis was only done for individu-
als not taking the drug or a drug within the same ATC therapeutical class 
similarly to the main analysis.

Drug–drug interactions
We used an in-house drug–drug interaction compendium generated 
from publicly available sources (Supplementary Table 11) to assess 
whether drug combinations had been reported previously to be 
interacting or not77. The compendium contains interactions from 
26 different datasets of pharmacovigilance, clinically oriented infor-
mation, schemas for NLP corpora, and drug–Cytochrome P450 rela-
tionships sources. For 12 of the drug–drug pairs in our dataset we  
could identify drug–drug interactions with reported severity (major, 
moderate, minor, possible, undetermined, and none) indicating  
clinical significance.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Owing to the informed consent given by study participants, the vari-
ous national ethical approvals for the present study, and the Euro-
pean General Data Protection Regulation (GDPR), individual-level 
clinical and omics data cannot be transferred from the centralized 
IMI-DIRECT repository. Requests for access to summary statistics of 
the IMI-DIRECT data, including those presented here, can be made to 
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directdataaccess@dundee.ac.uk. Requesters will be informed on how 
summary-level data can be accessed via the DIRECT secure analysis 
platform following submission of an appropriate application. The 
IMI-DIRECT data access policy is available at https://directdiabetes.org. 
Example data is available at https://github.com/RasmussenLab/MOVE/ 
for testing of MOVE. As described in the methods section we used 
ATC (https://www.who.int/tools/atc-ddd-toolkit/atc-classification) 
and WebGestalt (v.0.4.4 at http://www.webgestalt.org) for analysis of 
Gene Ontologies, Reactome (v.3.7 at https://reactome.org) for analy-
sis of molecular pathways, and MetaboAnalyst (v.5 at https://www.
metaboanalyst.ca) for analysis of targeted metabolomics data. The 
25 databases of drug–drug interactions are listed in Supplementary 
Table 11. Source data are provided with this paper.

Code availability
The MOVE pipeline is available at https://github.com/RasmussenLab/
MOVE/.
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