1,226 research outputs found

    Senior Recital, Sarah Agrios, violin

    Get PDF
    The presentation of this senior recital will fulfill in part the requirements for the Bachelor of Music degree in Perfomance. Sarah Agrios studies violin with Susanna Klein and Simon Lapoint

    Fungicides and the grapevine wood mycobiome: a case study on Tracheomycotic Ascomycete Phaemoniella chlamydospora reveals potential for two novel control strategies

    Get PDF
    Original ResearchPhaeomoniella chlamydospora is a tracheomycotic fungus that colonizes the xylem of grapevines (Vitis vinifera L.), causing wood discoloration, brown wood streaking, gummosis, and wood necrosis, which negatively affect the overall health, productivity, and life span of vines. Current control strategies to prevent or cope with P. chlamydospora infections are frequently ineffective. Moreover, it is unclear how fungicides commonly applied in vineyards against downy and powdery mildew agents affect the wood mycobiome, including wood pathogens such as P. chlamydospora. In this study, we used next-generation sequencing to assess the effects of foliar spray of grapevines with inorganic (copper oxychloride and sulfur), synthetic (penconazole and fosetyl-aluminum), and natural (Blad) fungicides currently used against the downy and powdery mildews. The subjects of our investigation were (i) the resident wood mycobiome, (ii) the early colonization by a consortium of fungal wood endophytes (ACEA1), (iii) the wood colonization success of P. chlamydospora, and (iv) the in planta interaction between P. chlamydospora and ACEA1, under greenhouse conditions, in rooted grapevine cuttings of cv. Cabernet Sauvignon. The data obtained suggest that the resident mycobiome is affected by different fungicide treatments. In addition, the early colonization success of the endophytes composing ACEA1 varied in response to fungicides, with relative abundances of some taxa being overrepresented or underrepresented when compared with the control. The wood colonization by P. chlamydospora comported significant changes in the mycobiome composition, and in addition, it was greatly affected by the foliar spray with Blad, which decreased the relative abundance of this pathogen 12-fold (4.9%) when compared with the control (60.7%) and other treatments. The presence of the pathogen also decreased considerably when co-inoculated into the plant with ACEA1, reaching relative abundances between 13.9% and 2.0%, depending on the fungicide treatment applied. This study shows that fungicides sprayed to prevent infections of powdery and downy mildews have an control strategies to fight P. chlamydospora, namely, the foliar spray with Blad and the use of ACEA1. Further studies to confirm these results are requiredinfo:eu-repo/semantics/publishedVersio

    The effect of environmental heterogeneity on RPW8-mediated resistance to powdery mildews in Arabidopsis thaliana

    Get PDF
    Background and Aims: The biotic and abiotic environment of interacting hosts and parasites may vary considerably over small spatial and temporal scales. It is essential to understand how different environments affect host disease resistance because this determines frequency of disease and, importantly, heterogeneous environments can retard direct selection and potentially maintain genetic variation for resistance in natural populations. Methods: The effect of different temperatures and soil nutrient conditions on the outcome of infection by a pathogen was quantified in Arabidopsis thaliana. Expression levels of a gene conferring resistance to powdery mildews, RPW8, were compared with levels of disease to test a possible mechanism behind variation in resistance. Key Results: Most host genotypes changed from susceptible to resistant across environments with the ranking of genotypes differing between treatments. Transcription levels of RPW8 increased after infection and varied between environments, but there was no tight association between transcription and resistance levels. Conclusions: There is a strong potential for a heterogeneous environment to change the resistance capacity of A. thaliana genotypes and hence the direction and magnitude of selection in the presence of the pathogen. Possible causative links between resistance gene expression and disease resistance are discussed in light of the present results on RPW8

    Erwinia mallotivora sp., a New Pathogen of Papaya (Carica papaya) in Peninsular Malaysia

    Get PDF
    Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414). Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch’s postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya
    corecore