37 research outputs found

    CD83 Modulates B Cell Function In Vitro: Increased IL-10 and Reduced Ig Secretion by CD83Tg B Cells

    Get PDF
    The murine transmembrane glycoprotein CD83 is an important regulator for both thymic T cell maturation and peripheral T cell responses. Recently, we reported that CD83 also has a function on B cells: Ubiquitous transgenic (Tg) expression of CD83 interfered with the immunoglobulin (Ig) response to infectious agents and to T cell dependent as well as T cell independent model antigen immunization. Here we compare the function of CD83Tg B cells that overexpress CD83 and CD83 mutant (CD83mu) B cells that display a drastically reduced CD83 expression. Correlating with CD83 expression, the basic as well as the lipopolysaccharide (LPS) induced expression of the activation markers CD86 and MHC-II are significantly increased in CD83Tg B cells and reciprocally decreased in CD83mu B cells. Wild-type B cells rapidly upregulate CD83 within three hours post BCR or TLR engagement by de novo protein synthesis. The forced premature overexpression of CD83 on the CD83Tg B cells results in reduced calcium signaling, reduced Ig secretion and a reciprocally increased IL-10 production upon in vitro activation. This altered phenotype is mediated by CD83 expressed on the B cells themselves, since it is observed in the absence of accessory cells. In line with this finding, purified CD83mu B cells displayed a reduced IL-10 production and slightly increased Ig secretion upon LPS stimulation in vitro. Taken together, our data strongly suggest that CD83 is expressed by B cells upon activation and contributes to the regulation of B cell function

    Attenuated Expression of A20 Markedly Increases the Efficacy of Double-Stranded RNA-Activated Dendritic Cells As an Anti-Cancer Vaccine

    No full text
    A20 is a zinc finger protein with ubiquitin-modifying activity. A20 has been described as negatively regulating signaling induced by the TNF receptor and TLR family in a number of cell types, including mouse bone marrow-derived dendritic cells (DiCs). However, the expression and effect of A20 in activated human monocyte-derived DCs have not been previously evaluated. We report that DCs activated with the TLR3 ligand poly(I:C) up-regulate A20. Down-regulating A20 demonstrated its role in the functional activation of DCs. A20 down-regulated DCs showed higher activation of the transcription factors NF-kappa B and activator protein-1, which resulted in increased and sustained production of IL-6, IL-10, and IL-12p70. We additionally silenced the immunosuppressive cytokine IL-10 and demonstrated that IL-10 inhibits T cell proliferation. We further demonstrated that A20 down-regulated DCs skew naive CD4(+) T cells toward IFN-gamma producing Th1 cells, a process which is dependent on IL-12p70 and which is unaffected by IL-10. Furthermore, A20 and/or IL-10 down-regulated DCs had an enhanced capacity to prime Melan-A/MART-1 specific CD8(+) T cells. Finally, we demonstrated that potent T cell stimulatory DCs are generated by the simultaneous delivery of poly(I:C12U), A20, or A20/IL-10 small interfering RNA and Ag-encoding mRNA, introducing a one step approach to improve DC-based vaccines. Together these findings demonstrate that A20 negatively regulates NF-kappa B and activator protein-1 in DCs and that down-regulation of A20 results in DCs with enhanced T cell stimulatory capacity

    CD83-stimulated monocytes suppress T-cell immune responses through production of prostaglandin E2

    No full text
    CD83 is commonly known as a specific marker for mature dendritic cells. It has been shown to be important for CD4+ T-cell development in the thymus. However, its function in the peripheral immune system remains enigmatic. Here, we show that CD83 inhibits proliferation and production of IL-2 and IFN-γ by T cells, and the inhibitory effect of CD83 is mediated by monocytes. Prostaglandin E2 (PGE2), but not IL-10 or TGF-β, was up-regulated specifically by CD83 in monocytes. Consistent with high levels of PGE2, expression of COX-2 also was increased upon CD83 treatment. NF-κB activation also is required for induction of PGE2 by CD83. Finally, application of the COX-2–selective inhibitor NS-398 fully prevented CD83-triggered inhibition of T-cell responses. Our study establishes an immune-regulatory mechanism by CD83 via stimulation of PGE2 production in monocytes
    corecore