884 research outputs found

    Gravitational instability of solar prominence threads I. Curved magnetic fields without dips

    Full text link
    Prominence threads are dense and cold structures lying on curved magnetic fields that can be suspended in the solar atmosphere against gravity. The gravitational stability of threads, in the absence of non-ideal effects, is comprehensively investigated in the present work by means of an elementary but effective model. Based on purely hydrodynamic equations in one spatial dimension and applying line-tying conditions at the footpoints of the magnetic field lines, we derive analytical expressions for the different feasible equilibria and the corresponding frequencies of oscillation. We find that the system allows for stable and unstable equilibrium solutions subject to the initial position of the thread, its density contrast and length, and the total length of the magnetic field lines. The transition between the two types of solutions is produced at specific bifurcation points that have been determined analytically in some particular cases. When the thread is initially at the top of the concave magnetic field, that is at the apex, we find a supercritical pitchfork bifurcation, while for a shifted initial thread position with respect to this point the symmetry is broken and the system is characterised by an S-shaped bifurcation. The plain results presented in this paper shed new light on the behaviour of threads in curved magnetic fields under the presence of gravity and help to interpret more complex numerical magnetohydrodynamics (MHD) simulations about similar structures.Comment: 13 pages, 9 figure

    Nuevo Ruscinomys (Rodentia, Mammalia) en el Mioceno Superior de la región de Teruel (España)

    Get PDF
    This is a study about a new forme of Ruscinomys. It is characterized by the extraordinary development of the protocone of the first upper molar, which gives it a much greater width than that of its homonyme Ruscinomys schaubi from the same site at Aljezar B. Clear discriminating morphological characteristics have not been found in the other dental pieces. Those molars which have a width clearly falling outside the normal distribution of Ruscinomys schaubi are attributed to the new species.Se presenta el estudio de una nueva forma de Ruscinomys. Se caracteriza por el extraordinario desarrollo del protocono del primer molar superior, lo que le proporciona una anchura mucho mayor que la de su homónimo de Ruscinomys schaubi del mismo yacimiento del Ajezar B. No se han hallado en las restantes piezas dentarias caracteres morfológicos claros de discriminación. Se atribuyen a la nueva especie los molares cuya anchura sale claramente fuera del área normal de las distribuciones de R. schaubi

    Revista de Vertebrados de la Estación Biológica de Doñana

    Get PDF
    Anfibios fósiles del Pleistoceno de Mallorca.Species densities of Reptiles and Amphibiansfon the Iberian PeninsulaEcología alimenticia del Petirrojo (Erithacus rubecula) durante su invernada en encinares del Sur de EspañaEl papel d. la Perdiz roja (Alectoris rufa) en la dieta de los predadores IbéricosComposición de las Comunidades de Passeriformes en dos biotopos de Sierra Morena Occidental.Sobre las Ginetas de la Isla de Ibiza (Genetta genetta isabelae n. ssp.)Peer reviewe

    The star forming region Monoceros R2 as a gamma-ray source

    Get PDF
    Context. After the release of the gamma-ray source catalog produced by the Fermi satellite during its first two years of operation, a significant fraction of sources still remain unassociated at lower energies. In addition to well-known high-energy emitters (pulsars, blazars, supernova remnants, etc.), theoretical expectations predict new classes of gamma-ray sources. In particular, gamma-ray emission could be associated with some of the early phases of stellar evolution, but this interesting possibility is still poorly understood. Aims. The aim of this paper is to assess the possibility of the Fermi gamma-ray source 2FGL J0607.5-0618c being associated with the massive star forming region Monoceros R2. Methods. A multi-wavelength analysis of the Monoceros R2 region is carried out using archival data at radio, infrared, X-ray, and gamma-ray wavelengths. The resulting observational properties are used to estimate the physical parameters needed to test the different physical scenarios. Results. We confirm the 2FGL J0607.5-0618c detection with improved confidence over the Fermi two-year catalog. We find that a combined effect of the multiple young stellar objects in Monoceros R2 is a viable picture for the nature of the source.Facultad de Ciencias Astronómicas y GeofísicasInstituto Argentino de Radioastronomí

    The star forming region Monoceros R2 as a gamma-ray source

    Get PDF
    Context. After the release of the gamma-ray source catalog produced by the Fermi satellite during its first two years of operation, a significant fraction of sources still remain unassociated at lower energies. In addition to well-known high-energy emitters (pulsars, blazars, supernova remnants, etc.), theoretical expectations predict new classes of gamma-ray sources. In particular, gamma-ray emission could be associated with some of the early phases of stellar evolution, but this interesting possibility is still poorly understood. Aims. The aim of this paper is to assess the possibility of the Fermi gamma-ray source 2FGL J0607.5-0618c being associated with the massive star forming region Monoceros R2. Methods. A multi-wavelength analysis of the Monoceros R2 region is carried out using archival data at radio, infrared, X-ray, and gamma-ray wavelengths. The resulting observational properties are used to estimate the physical parameters needed to test the different physical scenarios. Results. We confirm the 2FGL J0607.5-0618c detection with improved confidence over the Fermi two-year catalog. We find that a combined effect of the multiple young stellar objects in Monoceros R2 is a viable picture for the nature of the source.Facultad de Ciencias Astronómicas y GeofísicasInstituto Argentino de Radioastronomí

    Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior

    Get PDF
    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, Martín Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido

    The star forming region Monoceros R2 as a gamma-ray source

    Get PDF
    After the release of the gamma-ray source catalog produced by the Fermi satellite during its first two years of operation, a significant fraction of sources still remain unassociated at lower energies. In addition to well-known high-energy emitters (pulsars, blazars, supernova remnants, etc.), theoretical expectations predict new classes of gamma-ray sources. In particular, gamma-ray emission could be associated with some of the early phases of stellar evolution, but this interesting possibility is still poorly understood. Aims: The aim of this paper is to assess the possibility of the Fermi gamma-ray source 2FGL J0607.5-0618c being associated with the massive star forming region Monoceros R2. Methods: A multi-wavelength analysis of the Monoceros R2 region is carried out using archival data at radio, infrared, X-ray, and gamma-ray wavelengths. The resulting observational properties are used to estimate the physical parameters needed to test the different physical scenarios. Results: We confirm the 2FGL J0607.5-0618c detection with improved confidence over the Fermi two-year catalog. We find that a combined effect of the multiple young stellar objects in Monoceros R2 is a viable picture for the nature of the source
    corecore