11 research outputs found

    Atmospheric particulate matter from an industrial area as a source of metal nanoparticle contamination in aquatic ecosystems

    Get PDF
    Air pollution legislation and control worldwide is based on the size of particulate matter (PM) to evaluate the effects on environmental and human health, in which the small diameter particles are considered more dangerous than larger sizes. This study investigates the composition, stability, size and dispersion of atmospheric settleable particulate matter (SePM) in an aqueous system. We aimed to interrogate the changes in the physical properties and characteristics that can contribute to increased metal uptake by aquatic biota. Samples collected in an area influenced by the steel and iron industry were separated into 8 fractions (425 to ≤10 μm) and analysed physically and chemically. Results from ICP-MS and X-ray showed that the PM composition was mainly hematite with 80% of Fe, followed by Al, Mn and Ti. Among 27 elements analysed we found 19 metals, showing emerging metallic contaminants such as Y, Zr, Sn, La, Ba and Bi. Scanning electron microscopy (SEM) showed that SePM fractions are formed by an agglomeration of nanoparticles. Furthermore, dynamic light scattering (DLS), zeta potential and nanoparticle tracking analysis (NTA) demonstrated that SPM were dissociated in water, forming nanoparticles smaller than 200 nm, which can also contribute to water pollution. This study highlights that SePM contamination may be substantially higher than expected under that allowed in atmospheric regulatory frameworks, thereby extending their negative effect to water bodies upon settling, which is an underexplored area of our knowledge. We therefore provide important insights for future investigations on safety regulations involving SePM in the environment, indicating the need to revise the role of SePM, not solely associated with air pollution but also considering their deleterious effects on water resources

    Life cycle traits of Philodina roseola Ehrenberg, 1830 (Rotifera, Bdelloidea), a model organism for bioassays

    No full text
    This paper describes experimental results on the life cycle of the rotifer Philodina roseola cultured in the laboratory. Detailed information on life-cycle parameters of a certain species provides a deep understanding and contributes to a better knowledge of the role of the species in the community, besides providing data that are basic to other ecological investigations such as secondary production estimates and knowledge for applications such as its utilization as test-organism in ecotoxicological studies. The average duration of embryonic development of P. roseola was 23.88 h, the age at maturity of primipara was 3.5 days and the maximum lifespan was 23 days. The average size of the rotifer neonate was 198.77 µm, the mean size of primipara was 395.56 µm and for adults 429.96 µm. The average fecundity was 1.22 eggs per female per day and the mean number of eggs produced per female during the entire life was 22.33. The deceleration of somatic growth from the start of the reproductive stage represents a trade-off between growth and reproduction that is often seen in micrometazoans. The life history of P. roseola follows the strategy of other bdelloid species characterized by a rapid pre-reproductive development and canalization of most assimilated energy to reproduction after reaching maturity. The differences observed in total fecundity and longevity between our P. roseola cultures and those from previous studies were probably due to differences of intrinsic adaptation of this species ecotypes to the conditions of their natural environments

    Protozoans bacterivory in a subtropical environment during a dry/cold and a rainy/warm season

    No full text
    In aquatic ecosystems, bacteria are controlled by several organisms in the food chain, such as protozoa, that use them as food source. This study aimed to quantify the ingestion and clearance rates of bacteria by ciliates and heterotrophic nanoflagellates (HNF) in a subtropical freshwater reservoir (Monjolinho reservoir -São Carlos -Brazil) during one year period, in order to verify their importance as consumers and controllers of bacteria in two seasons, a dry/cold and a rainy/warm one. For this purpose, in situ bacterivory experiments were carried out bimonthly using fluorescently labeled bacteria with 5-(4,6 diclorotriazin-2yl) aminofluorescein (DTAF). Although ciliates have shown the highest individual ingestion and clearance rates, bacterivory was dominated by HNF, who showed higher population ingestion rates (mean of 9,140 bacteria h-1mL-1) when compared to ciliates (mean of 492 bacteria h-1mL-1). The greater predation impact on bacterial communities was caused mainly by the small HNF (< 5 µm) population, especially in the rainy season, probably due to the abundances of these organisms, the precipitation, trophic index state and water temperature that were higher in this period. Thus, the protozoan densities together with environmental variables were extremely relevant in determining the seasonal pattern of bacterivory in Monjolinho reservoir
    corecore