34 research outputs found

    Evaluation of the sliding wear and corrosion performance of triode-plasma nitrided Fe-17Cr-20Mn-0.5N high-manganese and Fe-19Cr-35Ni-1.2Si high-nickel austenitic stainless steels

    Get PDF
    Low-temperature plasma nitriding has been widely studied and applied, in enhancing the wear performance of austenitic stainless steels (ASSs) without losing corrosion resistance. In this work the wear and corrosion behaviours of two specialty ASSs, i.e. Staballoy® AG17 (Fe-17Cr-20Mn-0.5N, in wt%) and RA330® (Fe-19Cr-35Ni-1.2Si, in wt%), were evaluated – and compared to AISI 304 – before and after low-temperature triode plasma nitriding (TPN) at 400 °C and 450 °C. A nitrogen interstitially-supersaturated expanded austenite layer (γN) was developed for all three ASSs after TPN treatment at 400 °C, which led to a) an approximately 4-fold increase in surface hardness, b) a reduction in specific wear rate of at least 2 orders of magnitude in unlubricated dry-sliding, and c) an improved resistance to pitting in 3.5 wt% NaCl aqueous solution. Large numbers of ‘linear defects’ (identified in TEM studies as strips of HCP-εN) were seen in the γN-AG17 layer, that could be correlated to comparatively higher surface hardness and better wear resistance. Several slip/shear bands were also seen in the γN-330 layer, where short-range Cr-segregation could occur, leading to localised corrosion. More importantly, after TPN treatment at 450 °C, alloys AISI 304 and AG17 presented a deterioration in corrosion performance, whereas good corrosion performance was maintained for alloy RA330. Redistribution of Si (in preference to Cr) was revealed in γN-330 after TPN treatment at 450 °C, whereby Si-alloying at a significantly higher level than in the other two alloys investigated appears (in addition to the high Ni content in alloy 330) to be beneficial in delaying CrN precipitation, and thus in maintaining the good corrosion performance of γN after nitriding at low-to-intermediate temperatures.</p

    Tribological properties of duplex plasma oxidised, nitrided and PVD coated Ti-6Al-4V

    Get PDF
    The authors gratefully acknowledge financial support from the UK Technology Strategy Board under Technology Programme project TP/22076, for underpinning research carried out at Sheffield University, on which the work presented in this paper was partially based.Sequential triode plasma oxidation and nitriding have been used to provide enhanced load support for physical vapour deposited (PVD) hard coatings. The diffusion process has been designed to maximise process efficiency and coating adhesion, thereby significantly improving the tribological properties of the Ti–6Al–4V alloy — particularly at high contact pressures. This has been demonstrated using unlubricated linear reciprocating-sliding ball-on-plate wear tests and micro-scratch adhesion testing. Also, surface micro- profilometry, nano/micro-indentation hardness testing, scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and glow-discharge optical emission spectroscopy (GDOES) data are presented to corroborate the effect of the several plasma diffusion processes and duplex diffusion/coating combinations discussed here. The results presented show that the novel processing technique developed permits the use of oxygen diffusion in order to obtain relatively large case depths in shorter treatment times without compromising the adhesion strength of subsequently deposited PVD layers.peer-reviewe

    An investigation into the effect of Triode Plasma Oxidation (TPO) on the tribological properties of Ti6Al4V

    Get PDF
    The authors gratefully acknowledge the UK Technology Strategy Board for financial support under the collaborative project LIB-TEC, project No TP 22076.Improving the tribological properties of titanium alloys has been the subject of extensive research for many years. A number of thermochemical processes have been developed for that purpose. In this study, surface hardening of Ti6Al4V is achieved by Triode Plasma Oxidation (TPO) which differs from conventional diode plasma treatments through the use of a third electrode; a negatively biased tungsten filament to enhance the ionisation levels in the plasma. The resultant surface generally consists of a top oxide layer with an oxy- gen diffusion zone lying immediately underneath it. The effects of process parameters such as substrate tem- perature, current density and oxygen partial pressure have been investigated. Surface hardness measurements at various indentation loads were carried out to assess the changes in hardness with depth across the diffusion layer. The hardness profiles obtained confirmed the gradual decrease in hardness with treatment depth and provided an indication of the thickness of the hardened layer produced. Ball-on-plate reciprocating sliding wear data and glancing angle XRD analyses of the oxidised samples are also presented. The results indicate that a harder and deeper case is achieved at both high substrate temperature and high oxygen partial pressure. Furthermore, XRD data show that the substrate temperature strongly affects the structure of the oxide layer produced. All TPO-treated samples exhibit significantly better wear performance compared to the untreated material.peer-reviewe

    Evaluating the effects of PIRAC nitrogen-diffusion treatments on the mechanical performance of Ti-6Al-4V alloy

    Get PDF
    The authors would like to thank the European Regional Development Fund (Malta) for research equipment funded through the application of the project “Developing an Interdisciplinary Material Testing and Rapid Prototyping R&D Facility (Ref. no. 012)”. The authors are also greatly indebted to MATERAþ/ERA-NET Plus for funding support for this research (Project ESM-1935).Powder Immersion Reaction Assisted Coating (PIRAC) is a relatively simple nitrogen diffusion based process which has been proposed as a technique capable of considerable improvements in the tribological performance of ceramics and metals alike; however, the necessary exposure of the substrate material to high temperatures for several hours may have an adverse effect on the bulk properties of materials such as titanium alloys. The effect of PIRAC treatments on the bulk metallography and mechanical properties of Ti–6Al–4V has been studied. Following PIRAC nitrogen-diffusion treatment, studies using X-ray diffraction and cross-sectional microscopy have shown evidence of the formation of a thin (1.4 mm) TiN/Ti2N layer, together with the presence of some Ti3Al intermetallic phase. Semi- logarithmic S–N plots show a deleterious effect after PIRAC treatment in terms of material cyclic fatigue strength, particularly at higher treatment temperatures. Samples processed at 800 1C for 4 h however exhibit better fatigue performance than others treated at lower temperatures for longer nitriding times. Fractographic inspection has shown that fatigue cracks originate at (or near) the surface for the untreated Ti-alloy and from the subsurface regions following diffusion treatment, owing to the build-up of compressive stresses in the latter, which hinder crack propagation.peer-reviewe

    Enabling lightweight, high load aero-bearings

    Get PDF
    Environmental and commercial considerations are strongly driving research into weight saving in aircraft. In this research, innovative manufacturing processes were developed to produce lightweight titanium alloy bearings capable of withstanding high bearing pressures. This will enable the replacement of heavier conventional bearing materials with titanium alloy bearings of the same size thereby saving weight. Plasma processing and PVD coating techniques were refined and combined and a sound scientific understanding of the resulting novel processes developed to assure high performance, reliability and repeatability. These techniques were applied to test discs and small bearing (bush) samples, which were tested under progressively greater loads (pressures). FEA was also used to evaluate pressure distribution in a bush test assembly. The novel treatment has potential applications for many bearings and bearing surfaces throughout aircraft.peer-reviewe

    On the nitrogen-induced lattice expansion of a non-stainless austenitic steel, Invar 36®, under triode plasma nitriding

    Get PDF
    Chromium, as a strong nitride-forming element, is widely regarded to be an “essential” ingredient for the formation of a nitrogen-expanded lattice in thermochemical nitrogen diffusion treatments of austenitic (stainless) steels. In this article, a proprietary “chrome-free” austenitic iron-nickel alloy, Invar® 36 (Fe-36Ni, in wt pct), is characterized after triode plasma nitriding (TPN) treatments at 400 °C to 450 °C and compared with a “stainless” austenitic counterpart RA 330® (Fe-19Cr-35Ni, in wt pct) treated under equivalent nitriding conditions. Cr does indeed appear to play a pivotal role in colossal nitrogen supersaturation (and hence anisotropic lattice expansion and superior surface hardening) of austenitic steel under low-temperature (≤ 450 °C) nitrogen diffusion. Nevertheless, this work reveals that nitrogen-induced lattice expansion occurs below the nitride-containing surface layer in Invar 36 alloy after TPN treatment, implying that Cr is not a necessity for the nitrogen-interstitial induced lattice expansion phenomenon to occur, also suggesting another type of γN

    Gallium incorporation into phosphate based glasses: bulk and thin film properties

    Get PDF
    The osteogenic ions Ca2+, P5+, Mg2+, and antimicrobial ion Ga3+ were homogenously dispersed into a 1.45 mum thick phosphate glass coating by plasma assisted sputtering onto CP grade titanium. The objective was to deliver therapeutic ions in orthopedic/dental implants such as hip prosthesis or dental screws. The hardness 4.7 GPa and elastic modulus 69.7 GPa, of the coating were comparable to plasma sprayed hydroxyapatite/dental enamel, whilst superseding femoral cortical bone. To investigate the manufacturing challenge of translation from a target to vapour condensed coating, structural/compositional properties of the target (P51MQ) were compared to the coating (P40PVD) and a melt-quenched equivalent (P40MQ). Following condensation from P51MQ to P40PVD, P2O5 content reduced from 48.9 to 40.5 mol%. This depolymerisation and reduction in the P-O-P bridging oxygen content as determined by 31P-NMR, FTIR and Raman spectroscopy techniques was attributed to a decrease in the P2O5 network former and increases in alkali/alkali-earth cations. P40PVD appeared denser (3.47 vs. 2.70 g cm-3) and more polymerised than it’s compositionally equivalent P40MQ, showing that structure/ mechanical properties were affected by manufacturing route

    The role of nanocomposite coatings in surface engineering

    No full text

    Microstructure of direct current and pulse magnetron sputtered Cr–B coatings

    No full text
    Chromium diboride thin films possess desirable combinations of properties (such as high hardness, wear resistance, chemical inertness, high thermal and electrical conductivity), which are attractive for a wide range of potential industrial applications. However, these properties depend strongly on the deposition process and parameters. Investigation of the resultant coating structures could explain certain differences between them, giving important information about the characteristics of the deposition process (which in this particular case is a recently developed method involving magnetron sputtering of loosely packed blended powder targets) and pointing out directions for improvement. In this paper, Cr–B coatings deposited by direct current (DC) and DC-pulse magnetron sputtering of loosely packed blended powder targets are characterised by transmission electron microscopy (TEM) techniques (electron diffraction and bright-field/dark-field imaging). The structures of the coatings deposited with different parameters are investigated and compared, and the effect of oxygen contamination on the structure is discussed. Coatings with an extremely fine, nanocolumnar structure were observed. DC sputter deposited (and generally non-stoichiometric) Cr–B coatings exhibit a short range ordered ‘zone T’ microstructure, while DC-pulse deposited stoichiometric CrB2 coatings are dense and defect-free, crystalline and show strong preferred orientation. A small amount of contamination by oxygen of the interfacial sub-layers (due to the target material being a powder) of the DC-pulse magnetron sputter deposited stoichiometric CrB2 (and near-stoichiometric CrB) coatings was found to affect the structure by suppressing nanocolumnar growth and promoting equiaxed, nanometer-sized grains, close to the coating/substrate interface. The majority of the coating however remained nanocolumnar
    corecore