119 research outputs found

    Correction: The Endocytic Adaptor Eps15 Controls Marginal Zone B Cell Numbers.

    Get PDF
    Eps15 is an endocytic adaptor protein involved in clathrin and non-clathrin mediated endocytosis. In Caenorhabditis elegans and Drosophila melanogaster lack of Eps15 leads to defects in synaptic vesicle recycling and synapse formation. We generated Eps15-KO mice to investigate its function in mammals. Eps15-KO mice are born at the expected Mendelian ratio and are fertile. Using a large-scale phenotype screen covering more than 300 parameters correlated to human disease, we found that Eps15-KO mice did not show any sign of disease or neural deficits. Instead, altered blood parameters pointed to an immunological defect. By competitive bone marrow transplantation we demonstrated that Eps15-KO hematopoietic precursor cells were more efficient than the WT counterparts in repopulating B220âș bone marrow cells, CD19⁻ thymocytes and splenic marginal zone (MZ) B cells. Eps15-KO mice showed a 2-fold increase in MZ B cell numbers when compared with controls. Using reverse bone marrow transplantation, we found that Eps15 regulates MZ B cell numbers in a cell autonomous manner. FACS analysis showed that although MZ B cells were increased in Eps15-KO mice, transitional and pre-MZ B cell numbers were unaffected. The increase in MZ B cell numbers in Eps15 KO mice was not dependent on altered BCR signaling or Notch activity. In conclusion, in mammals, the endocytic adaptor protein Eps15 is a regulator of B-cell lymphopoiesis

    Early pulmonary response is critical for extra-pulmonary carbon nanoparticle mediated effects: comparison of inhalation versus intra-arterial infusion exposures in mice

    Get PDF
    Background: The death toll associated with inhaled ambient particulate matter (PM) is attributed mainly to cardiovascular rather than pulmonary effects. However, it is unclear whether the key event for cardiovascular impairment is particle translocation from lung to circulation (direct effect) or indirect effects due to pulmonary particle-cell interactions. In this work, we addressed this issue by exposing healthy mice via inhalation and intra-arterial infusion (IAI) to carbon nanoparticles (CNP) as surrogate for soot, a major constituent of (ultrafine) urban PM. Methods: Equivalent surface area CNP doses in the blood (30mm(2) per animal) were applied by IAI or inhalation (lung-deposited dose 10,000mm(2);accounting for 0.3% of lung-to-blood CNP translocation). Mice were analyzed for changes in hematology and molecular markers of endothelial/epithelial dysfunction, pro-inflammatory reactions, oxidative stress, and coagulation in lungs and extra-pulmonary organs after CNP inhalation (4 h and 24 h) and CNP infusion (4 h). For methodological reasons, we used two different CNP types (spark-discharge and Printex90), with very similar physicochemical properties [>= 98 and >= 95% elemental carbon;10 and 14 nm primary particle diameter;and 800 and 300 m(2)/g specific surface area] for inhalation and IAI respectively. Results: Mild pulmonary inflammatory responses and significant systemic effects were observed following 4 h and 24 h CNP inhalation. Increased retention of activated leukocytes, secondary thrombocytosis, and pro-inflammatory responses in secondary organs were detected following 4 h and 24 h of CNP inhalation only. Interestingly, among the investigated extra-pulmonary tissues (i.e. aorta, heart, and liver);aorta revealed as the most susceptible extra-pulmonary target following inhalation exposure. Bypassing the lungs by IAI however did not induce any extra-pulmonary effects at 4 h as compared to inhalation. Conclusions: Our findings indicate that extra-pulmonary effects due to CNP inhalation are dominated by indirect effects (particle-cell interactions in the lung) rather than direct effects (translocated CNPs) within the first hours after exposure. Hence, CNP translocation may not be the key event inducing early cardiovascular impairment following air pollution episodes. The considerable response detected in the aorta after CNP inhalation warrants more emphasis on this tissue in future studies

    Dll1 Haploinsufficiency in Adult Mice Leads to a Complex Phenotype Affecting Metabolic and Immunological Processes

    Get PDF
    BACKGROUND: The Notch signaling pathway is an evolutionary conserved signal transduction pathway involved in embryonic patterning and regulation of cell fates during development and self-renewal. Recent studies have demonstrated that this pathway is integral to a complex system of interactions, involving as well other signal transduction pathways, and implicated in distinct human diseases. Delta-like 1 (Dll1) is one of the known ligands of the Notch receptors. The role of the Notch ligands is less well understood. Loss-of-function of Dll1 leads to embryonic lethality, but reduction of Delta-like 1 protein levels has not been studied in adult stage. METHODOLOGY/PRINCIPAL FINDINGS: Here we present the haploinsufficient phenotype of Dll1 and a missense mutant Dll1 allele (Dll1(C413Y)). Haploinsufficiency leads to a complex phenotype with several biological processes altered. These alterations reveal the importance of Dll1 mainly in metabolism, energy balance and in immunology. The animals are smaller, lighter, with altered fat to lean ratio and have increased blood pressure and a slight bradycardia. The animals have reduced cholesterol and triglyceride levels in blood. At the immunological level a subtle phenotype is observed due to the effect and fine-tuning of the signaling network at the different levels of differentiation, proliferation and function of lymphocytes. Moreover, the importance of the proteolytic regulation of the Notch signaling network emphasized. CONCLUSIONS/SIGNIFICANCE: In conclusion, slight alterations in one player of Notch signaling alter the entire organism, emphasizing the fine-tuning character of this pathway in a high number of processes

    Toxicity modelling of Plk1-targeted therapies in genetically engineered mice and cultured primary mammalian cells

    Get PDF
    High attrition rates of novel anti-cancer drugs highlight the need for improved models to predict toxicity. Although polo-like kinase 1 (Plk1) inhibitors are attractive candidates for drug development, the role of Plk1 in primary cells remains widely unexplored. Therefore, we evaluated the utility of an RNA interference-based model to assess responses to an inducible knockdown (iKD) of Plk1 in adult mice. Here we show that Plk1 silencing can be achieved in several organs, although adverse events are rare. We compared responses in Plk1-iKD mice with those in primary cells kept under controlled culture conditions. In contrast to the addiction of many cancer cell lines to the non-oncogene Plk1, the primary cells' proliferation, spindle assembly and apoptosis exhibit only a low dependency on Plk1. Responses to Plk1-depletion, both in cultured primary cells and in our iKD-mouse model, correspond well and thus provide the basis for using validated iKD mice in predicting responses to therapeutic interventions

    A comprehensive and comparative phenotypic analysis of the collaborative founder strains identifies new and known phenotypes.

    Get PDF
    The collaborative cross (CC) is a large panel of mouse-inbred lines derived from eight founder strains (NOD/ShiLtJ, NZO/HILtJ, A/J, C57BL/6J, 129S1/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Here, we performed a comprehensive and comparative phenotyping screening to identify phenotypic differences and similarities between the eight founder strains. In total, more than 300 parameters including allergy, behavior, cardiovascular, clinical blood chemistry, dysmorphology, bone and cartilage, energy metabolism, eye and vision, immunology, lung function, neurology, nociception, and pathology were analyzed; in most traits from sixteen females and sixteen males. We identified over 270 parameters that were significantly different between strains. This study highlights the value of the founder and CC strains for phenotype-genotype associations of many genetic traits that are highly relevant to human diseases. All data described here are publicly available from the mouse phenome database for analyses and downloads

    CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection

    Get PDF
    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A ( CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2A(HOZ)) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2A(HOZ) mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4(+) T-cells and CD8(+) effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2A(HOZ) as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects.Peer reviewe

    Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System

    Get PDF
    Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Legislative Documents

    Get PDF
    Also, variously referred to as: Senate bills; Senate documents; Senate legislative documents; legislative documents; and General Court documents

    Der Streptozotozin-induzierte Diabetes in der transgenen CD4/DR17-Maus

    No full text
    Zusammenfassung Thure Adler Der Streptozotozin-induzierte Diabetes in der transgenen CD4/DR17-Maus Aus dem Institut fĂŒr Immunologie der VeterinĂ€rmedizinischen FakultĂ€t und dem Institut fĂŒr Klinische Immunologie und Transfusionsmedizin der Medizinischen FakultĂ€t der UniversitĂ€t Leipzig, 80 Seiten, 24 Abbildungen, 20 Tabellen, 217 Literaturangaben Die Verwendung transgener Tiere, die humane MolekĂŒle exprimieren, gewinnt zunehmend an Bedeutung bei der Erforschung der Funktionen solcher MolekĂŒle in Krankheitsprozessen und bei der experimentellen Erprobung neuartiger Therapieverfahren, in denen solche MolekĂŒle die Zielstrukturen darstellen. In der vorliegenden Arbeit wurde die CD4/DR17-Maus, welche das humane CD4- und das DR17-MolekĂŒl exprimiert, im MLD-STZ-induzierten Diabetes, einem Tiermodell fĂŒr den Typ 1 Diabetes, eingesetzt. Die funktionelle Beteiligung der Transgene wurde durch einen Vergleich mit Segreganten untersucht, denen die Transgene teilweise fehlen. Als klinische Parameter sind Blutglukose und Glukosetoleranz erfaßt worden, histopathologisch wurden Insulitis und Insulingehalt der Inselzellen bestimmt. Ferner wurde getestet, ob sich durch Verabreichung von monoklonalen Antikörpern, die gegen das transgene hCD4- oder gegen das CD8-MolekĂŒl gerichtet sind, dieser STZ-induzierte Diabetes beeinflussen lĂ€ĂŸt. Mit Hilfe der durchflußzytometrischen Immunfluoreszenzanalyse von Blutzellen wurde zusĂ€tzlich ĂŒberprĂŒft, ob VerĂ€nderungen auf T-Zellen hinsichtlich der Expression der Aktivierungsmarker CD25, CD69 und CD71 wĂ€hrend des STZ-induzierten Diabetes auftreten. Es wurde gezeigt, dass die CD4/DR17-transgene Maus nach der Behandlung mit mehrfachen subdiabetogenen Dosen von Streptozotozin eine transiente HyperglykĂ€mie entwickelt, die mit einer verringerten Glukosetoleranz sowie Insulitiden und einem RĂŒckgang des Insulingehaltes in den Langerhans\u92schen Inseln einhergeht. Vergleiche mit Segreganten zeigen, dass die Expression beider transgener Merkmale zur maximalen AusprĂ€gung einer schwergradigen Insulitis beitrĂ€gt. Die Anwendung von monoklonalen Antikörpern gegen das transgene hCD4-MolekĂŒl nach Beginn der STZ-Behandlung hat den Diabetes nicht wirkungsvoll verzögert. Dagegen milderte eine Behandlung mit Antikörpern, die gegen das CD8-MolekĂŒl gerichtet sind, den Diabetesverlauf. WĂ€hrend des STZ-Diabetes verĂ€nderte sich die Expression von Aktivierungsmarkern auf Lymphozyten des peripheren Blutes nicht signifikant. Die Arbeit belegt, dass die CD4/DR17-Maus suszeptibel gegenĂŒber der Induktion eines experimentellen Diabetes mit mehrfachen subdiabetogenen Dosen von Streptozotozin ist. Die transgenen MolekĂŒle hCD4 und DR17 sind dabei am Krankheitsprozeß beteiligt.Summary Thure Adler The streptozotocin-induced diabetes in the transgenic CD4/DR17 mouse From the Institute of Immunology, Faculty of Veterinary Medicine and the Institute of Clinical Immunology and Transfusion Medicine, Faculty of Medicine, University of Leipzig 80 pages, 24 figures, 20 tables, 217 references Today, transgenic animals that express human molecules are getting important tools in functional studies and experimental, therapeutical attempts, that target these molecules. In this study, the CD4/DR17 mouse expressing the human CD4 and the human DR17 molecules and with a defective murine CD4 gene, was used in the multiple low-dose streptozotocin-induced (MLD-STZ) diabetes model, a model for type 1 diabetes. The functional involvement of the transgenic molecules in the development of the MLD-STZ-diabetes was analysed by comparing CD4/DR17 mice and segregants that lack one or more of the transgenes. The described parameters included the measurement of blood glucose levels and oral glucose tolerance tests, histopathologically grading of insulitis and determination of the content of insulin in pancreatic islets by immunohistological methods. In addition, the model was used to test the potential therapeutic effect of the administration of monoclonal antibodies against hCD4 or CD8. Furthermore, alterations of the expression of the activation markers CD25, CD69 and CD71 during the experimentally induced diabetes has been measured by FACS analysis. The study shows, that CD4/DR17 mice develop a transient hyperglycemia after MLD-STZ treatment, accompanied by a reduced tolerance to oral glucose, insulitis and the reduction of the content of insulin in the pancreatic islets. The full incidence of insulitis requires the expression of both transgenes. The treatment performed with monoclonal antibodies against the transgenic hCD4 after STZ-treatment could not meliorate the diabetic course, while the treatment with anti CD8 antibodies moderated the diabetic process. After STZ-treatment the expression of activation marker of peripheral T-cells did not alter significantly. Thus, the CD4/DR17 mouse is shown to be susceptible to the induction of experimental diabetes with MLD-STZ. The transgenic molecules CD4 and DR17 are involved in the pathogenesis of the disease
    • 

    corecore