21 research outputs found

    Evaluating the assimilation of S5P/TROPOMI near real-time SO2 columns and layer height data into the CAMS integrated forecasting system (CY47R1), based on a case study of the 2019 Raikoke eruption

    Get PDF
    The Copernicus Atmosphere Monitoring Service(CAMS), operated by the European Centre for Medium-Range Weather Forecasts on behalf of the European Com-mission, provides daily analyses and 5 d forecasts of atmospheric composition, including forecasts of volcanic sulfur dioxide (SO2) in near real time. CAMS currently assimilates total column SO2products from the GOME-2 instruments on MetOp-B and MetOp-C and the TROPOMI instrument on Sentinel-5P, which give information about the location and strength of volcanic plumes. However, the operational TROPOMI and GOME-2 data do not provide any information about the height of the volcanic plumes, and therefore some prior assumptions need to be made in the CAMS data assimilation system about where to place the resulting SO2increments in the vertical. In the current operational CAMS configuration, the SO2increments are placed in the mid-troposphere, around 550 hPa or 5 km. While this gives good results for the majority of volcanic emissions, it will clearly be wrong for eruptions that inject SO2at very different altitudes, in particular exceptional events where part of the SO2plume reaches the stratosphere.A new algorithm, developed by the German Aerospace Centre (DLR) for GOME-2 and TROPOMI, optimized in the frame of the ESA-funded Sentinel-5P Innovation–SO2Layer Height Project, and known as the Full-Physics Inverse Learning Machine (FP_ILM) algorithm, retrieves SO2 layer height from TROPOMI in near real time (NRT) in addition to the SO2column. CAMS is testing the assimilation of these products, making use of the NRT layer height information to place the SO2increments at a retrieved altitude. Assimilation tests with the TROPOMI SO2layer height data for the Raikoke eruption in June 2019 show that the resulting CAMSSO2plume heights agree better with IASI plume height data than operational CAMS runs without the TROPOMI SO2layer height information and show that making use of the additional layer height information leads to improved SO2 forecasts. Including the layer height information leads to higher modelled total column SO2values in better agreement with the satellite observations. However, the plume area and SO2burden are generally also overestimated in the CAMS analysis when layer height data are used. The main reason for this overestimation is the coarse horizontal resolution used in the minimizations. By assimilating the SO2layer height data, the CAMS system can predict the overall location of the Raikoke SO2plume up to 5 d in advance for about 20 dafter the initial eruption, which is better than with the operational CAMS configuration (without prior knowledge of the plume height) where the forecast skill is much more reduced for longer forecast lead times

    Toxic iron species in lower-risk myelodysplastic syndrome patients:course of disease and effects on outcome

    Get PDF

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and RĂ©union Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Data assimilation in highly nonlinear sytems

    No full text
    Particle filters are a class of data-assimilation schemes which, unlike current operational data-assimilation methods, make no assumptions about the linearity of the model equations or observation operators. This means They can potentially represent the full, possibly multi-modal, posterior probability density function (pdf). Unfortunately, the standard Sequential Importance Resampling (SIR) particle filter requires too many pal1icles to make it a viable operational data-assimilation scheme in high dimensional systems. This thesis explores an adaptation to the SIR filter, the equivalent-weights particle filter, designed to ensure an ensemble representation of the high probability region of the posterior pdf even in high dimensional systems. The formulation of the equivalent-weights particle filter involves various tuneable parameters. The first part of this thesis focusses on a theoretical and practical examination of the effect of the parameter choices on the ability of the equivalent-weights particle filter to represent the posterior pdf. Theoretically, the importance of ensuring equivalent weights for the majority of particles is shown and consequently the need to sample from a mixture proposal density al analysis time. Practically, the potentially large influence of the parameters is demonstrated and how this can be used to establish appropriate choices for some of the parameters is discussed. The second part of the thesis considers two areas related to the potential of the equivalent-weights particle filter as a viable data-assimilation scheme: the capacity to represent the posterior pdf and the effect on any model balances that may be present in the system. The ability of the equivalent-weights particle filter to represent the high probability region of the posterior pdf with relatively few particles in high dimensional systems is demonstrated. Changes in the observation distribution, frequency or error statistics result in minimal impact to this posterior representation. More distinctive effects are seen when the model error statistics are misrepresented in the ensemble. The final section on model balances relates to the use of the equivalent-weights pa11icle filter in atmosphere and ocean numerical models. The equivalent-weights par1icle filter is shown to have little effect on the model balances present in a simple ocean model and hence there is no evidence for the introduction of spurious gravity wavesEThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Description and evaluation of the tropospheric aerosol scheme in the Integrated Forecasting System (IFS-AER, cycle 47R1) of ECMWF

    No full text
    Abstract. This article describes the Integrated Forecasting System aerosol scheme (IFS-AER) used operationally in the IFS cycle 47R1, which was operated by the European Centre for Medium Range Weather Forecasts (ECMWF) in the framework of the Copernicus Atmospheric Monitoring Services (CAMS). It represents an update of the Rémy et al. (2019) article, which described cycle 45R1 of IFS-AER in detail. Here, we detail only the parameterisations of sources and sinks that have been updated since cycle 45R1, as well as recent changes in the configuration used operationally within CAMS. Compared to cycle 45R1, a greater integration of aerosol and chemistry has been achieved. Primary aerosol sources have been updated, with the implementation of new dust and sea salt aerosol emission schemes. New dry and wet deposition parameterisations have also been implemented. Sulfate production rates are now provided by the global chemistry component of IFS. This paper aims to describe most of the updates that have been implemented since cycle 45R1, not just the ones that are used operationally in cycle 47R1; components that are not used operationally will be clearly flagged. Cycle 47R1 of IFS-AER has been evaluated against a wide range of surface and total column observations. The final simulated products, such as particulate matter (PM) and aerosol optical depth (AOD), generally show a significant improvement in skill scores compared to results obtained with cycle 45R1. Similarly, the simulated surface concentration of sulfate, organic matter and sea salt aerosol are improved by cycle 47R1 compared to cycle 45R1. Some biases persist, such as the surface concentrations of nitrate and organic matter being simulated too high. The new wet and dry deposition schemes that have been implemented into cycle 47R1 have a mostly positive impact on simulated AOD, PM and speciated aerosol surface concentration

    Assimilation of TROPOMI SO2 Layer Height Data in the CAMS System

    No full text
    The Copernicus Atmosphere Monitoring Service (CAMS), operated by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European Commission, provides daily analyses and 5-day forecasts of atmospheric composition, including forecasts of volcanic sulfur dioxide (SO2) in near-real time (NRT). CAMS currently assimilates total column SO2 retrievals from the GOME-2 and TROPOMI instruments which give information about the location and strength of volcanic plumes. However, the operational TROPOMI and GOME-2 retrievals do not provide any information about the height of the volcanic plumes and therefore some prior assumptions need to be made in the CAMS data assimilation system about where to place the resulting SO2 increments in the vertical. Currently, the SO2 increments are placed in the mid-troposphere, around 550 hPa. While this gives good results for the majority of volcanic emissions, it will clearly be wrong for eruptions that inject SO2 at very different altitudes, in particular for exceptional events where part of the SO2 reaches the stratosphere. A new algorithm, developed by DLR for GOME-2 and now being adapted to TROPOMI in the frame of the ESA-funded Sentinel-5P Innovation–SO2 Layer Height Project (S5P+I: SO2LH), the Full-Physics Inverse Learning Machine (FP_ILM) algorithm, retrieves SO2 layer height from TROPOMI in NRT in addition to the SO2 column. CAMS is testing the assimilation of these data, making use of the NRT layer height information to place the SO2 increments at a better altitude. We present results from assimilation tests with the TROPOMI SO2 layer height data for several volcanic eruptions and show that making use of the additional layer height information leads to improved SO2 forecasts

    Description and evaluation of the tropospheric aerosol scheme in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1)

    No full text
    International audienceThis article describes the IFS-AER aerosol module used operationally in the Integrated Forecasting System (IFS) cycle 45R1, operated by the European Centre for Medium-Range Weather Forecasts (ECMWF) in the framework of the Copernicus Atmospheric Monitoring Services (CAMS). We describe the different parameterizations for aerosol sources, sinks, and its chemical production in IFS-AER, as well as how the aerosols are integrated in the larger atmospheric composition forecasting system. The focus is on the entire 45R1 code base, including some components that are not used operationally, in which case this will be clearly specified. This paper is an update to the Morcrette et al. (2009) article that described aerosol forecasts at the ECMWF using cycle 32R2 of the IFS. Between cycles 32R2 and 45R1, a number of source and sink processes have been reviewed and/or added, notably increasing the complexity of IFS-AER. A greater integration with the tropospheric chemistry scheme of the IFS has been achieved for the sulfur cycle and for nitrate production. Two new species, nitrate and am-monium, have also been included in the forecasting system. Global budgets and aerosol optical depth (AOD) fields are shown, as is an evaluation of the simulated particulate matter (PM) and AOD against observations, showing an increase in skill from cycle 40R2, used in the CAMS interim ReAnalysis (CAMSiRA), to cycle 45R1
    corecore