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ABSTRACT

The disadvantage of the majority of data assimilation schemes is the assumption that the conditional

probability density function of the state of the system given the observations [posterior probability density

function (PDF)] is distributed either locally or globally as aGaussian. The advantage, however, is that through

various different mechanisms they ensure initial conditions that are predominantly in linear balance and

therefore spurious gravity wave generation is suppressed.

The equivalent-weights particle filter is a data assimilation scheme that allows for a representation of a

potentially multimodal posterior PDF. It does this via proposal densities that lead to extra terms being added

to the model equations and means the advantage of the traditional data assimilation schemes, in generating

predominantly balanced initial conditions, is no longer guaranteed.

This paper looks in detail at the impact the equivalent-weights particle filter has on dynamical balance and

gravity wave generation in a primitive equation model. The primary conclusions are that (i) provided the

model error covariance matrix imposes geostrophic balance, then each additional term required by the

equivalent-weights particle filter is also geostrophically balanced; (ii) the relaxation term required to ensure

the particles are in the locality of the observations has little effect on gravity waves and actually induces a

reduction in gravity wave energy if sufficiently large; and (iii) the equivalent-weights term, which leads to the

particles having equivalent significance in the posterior PDF, produces a change in gravity wave energy

comparable to the stochastic model error. Thus, the scheme does not produce significant spurious gravity

wave energy and so has potential for application in real high-dimensional geophysical applications.

1. Introduction

Dynamical balance is an inherent part of the majority

of geophysical model equations and plays a particularly

important role in numerical weather prediction (Gill

1982). A model’s dynamical balances are defined phys-

ical relationships between different model variables that

can cause serious issues with the quality of model pre-

dictions if they are not maintained to a certain degree

(Daley 1991). In particular, it is important that the initial

condition is near balanced in order to avoid the pro-

liferation of gravity waves throughout a model forecast

(Lorenc 2003b).

In numerical weather prediction the initial conditions for

forecasts are generated using data assimilation. Data as-

similation is the process of estimating the probability den-

sity function (PDF) of the state of a system by combining

often noisy, incomplete observations with information

from numerical predictions. There are two main classes of

data assimilation methods that are currently in use in op-

erational centers: variational methods and ensemble Kal-

man filters (EnKFs). Variational methods (Lorenc 1986;

Le Dimet and Talagrand 1986; Talagrand and Courtier

1987; Courtier and Talagrand 1987) enforce the linear

balance relations through a background error covariance

matrix, which represents uncertainty in the information

from the numerical predictions. The dynamical balance

relationships are incorporated in the structure and formu-

lation of the background error covariance matrix and this

leads to an initial condition that is predominantly in bal-

ance (Lorenc et al. 2000; Lorenc 2003a; Bannister 2008).

The ensemble Kalman filter (Evensen 1994; Burgers

et al. 1998) and its variants (Bishop et al. 2001; Anderson

2001; Whitaker and Hamill 2002) use the information
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from an ensemble of model runs to formulate a forecast

error covariance matrix. Since the model runs will all pro-

duce a nearly balanced state at observation time, this fore-

cast error covariance matrix should also ensure initial

conditions that are close to linearlybalanced.Unfortunately,

spatial localization is necessary in these ensemble methods

to avoid spurious long-range correlations and to increase the

effective ensemble size. This localization disrupts the en-

forced relationships between variables (Houtekamer and

Mitchell 2005) and means that balanced initialization may

be required as an additional step (Buehner et al. 2010).

Although both these classes of data assimilation

methods ultimately lead to near-balanced initial condi-

tions, they produce a single analysis model state with an

associated analysis error covariance matrix that gives

either the local or global uncertainty of the estimate.

The underlying assumption is that the conditional PDF

for the current state of the system given the observations,

known as the posterior PDF, can be represented by

a unimodal distribution close to aGaussian. The presently

popular hybrid methods (e.g., Liu et al. 2008) also make

this assumption. Historically, this conjecture was justified

since the coarse resolution of the models meant the large-

scale linear flow dominated leading to a Gaussian poste-

rior PDF. As the models have become more nonlinear

and grid resolution has increased, however, the appro-

priateness of this approximation becomes questionable.

Particle filters are a third class of data assimilation

methods that do allow for the representation of poten-

tially multimodal posterior PDFs. They portray the in-

formation from previous numerical predictions by an

ensemble of model runs or particles that are then

weighted by their proximity to the observations. The

difficulty is that these weights can vary widely, particu-

larly with large numbers of observations, leading to the

representation of the posterior PDF by a single and

generally uninformative particle (Snyder et al. 2008). This

is known as filter degeneracy and considerable research

has been undertaken to try and alleviate the issue [see

Van Leeuwen (2009) for a review for the geosciences].

The basic formulation of particle filters can be adap-

ted through the use of proposal densities. There is great

freedom in how proposal densities can be chosen and

many different variants have been explored (Doucet

et al. 2001; Morzfeld et al. 2012; Papadakis et al. 2010;

Weare 2009). The equivalent-weights particle filter

(Van Leeuwen 2010) uses two different proposal den-

sities to ensure samples from the posterior that are in the

locality of the observations and for which the majority

contribute information on the posterior PDF. The spe-

cific proposal densities chosen to ensure these properties

result in changes to the model state beyond those already

determined by the model equations. The size of these

changes can sometimes be larger than themodification to

the state induced by just applying the deterministicmodel

equations. Since dynamical balances are an integral part

of the deterministic model equations, any change in state

because of the deterministic model will be predominantly

in balance. The question addressed by this article is what

impact the additional terms required by the equivalent-

weights particle filter will have on a model’s dynamical

balances and whether it will consequently introduce

spurious gravity waves in model forecasts.

The article is structured as follows: Section 2 provides an

overview of the basic formulation of particle filters and the

manner in which this is adapted by the equivalent-weights

particle filter. In particular, it focusses on the displacement

in state space required by the choice of proposal density.

The impact on dynamical balances is assessed using

a primitive equation model described in section 3. In

section 4, the relationship between the equivalent-weights

particle filter and dynamical balances is discussed. The

effect this has on the representation of the posterior

PDF is shown in section 5, and this is followed by a more

detailed examination of the effect on gravity waves in

section 6. Finally, conclusions are stated in section 7.

2. Equivalent-weights particle filter

a. Particle filters

Particle filters are based on two principles: Bayes’s the-

orem and the Monte Carlo simulation of PDFs. In the

MonteCarlo simulation, a PDF is represented by a series of

randomdraws or particles. In this case, it is the information

coming from previous numerical predictions, or the prior

PDF, which is represented by a set of delta functions cen-

tered at individual model states. If the model state of par-

ticle i at time n is represented by xni , then this equates to

p(xn)’
1

N
�
N

i51

d(xni 2 xn) . (1)

The observation information is included in this Monte

Carlo representation of the model state using Bayes’s

theorem:

p(xn j yn)5p(yn j xn)p(xn)
p(yn)

. (2)

Together, the two lead to the posterior PDF [p(xn j yn)]
being represented by theweighted sumof delta functions:

p(xn j yn)5 �
N

i51

wn
i d(x

n
i 2 xn) , (3)

wn
i 5

p(yn j xni )

�
N

k51

p(yn j xnk)
. (4)
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Here, yn is the observation vector at time n, and

p(yn j xni ) is called the likelihood, since the probability of

observing yn given the model state xni is an indication of

how likely that observation is given the model state. In

effect, the weight of each particle is related to how close

the model state of that particle is to the observation

vector. Filter degeneracy occurs when insufficient par-

ticles are close to the observation at analysis time. This

means the normalized likelihood of one particle can

dominate the weights and the posterior PDF then ef-

fectively becomes represented by this singlemodel state.

The above is a very brief overview of the general

formulation of particle filters. A full description is beyond

the scope of this article, but formore detailed information

see Doucet et al. (2001) or Van Leeuwen (2009).

b. Equivalent-weights particle filter

The equivalent-weights particle filter is an adaptation

of this general formulation using proposal densities. It is

designed to avoid filter degeneracy while ensuring that

the majority of particles are samples from the high prob-

ability region of the posterior PDF.An overviewof the full

scheme is given in the appendix, but for a theoretical jus-

tification of the adaptations, see Ades and Van Leeuwen

(2013). Here, the relevant equations with relation to

dynamical balances and gravity waves are discussed.

1) RELAXATION

There are two key adaptationsmade in the equivalent-

weights particle filter. In the basic particle filter, each

particle is moved forward in time to the next observation

according to the stochastic model equations:

x
j
i 5 f (x

j21
i )1 db

j21
i , (5)

where xji is the model state of particle i at time j, f(�) are
the discretized model equations, and dbj21

i is the sto-

chastic error representing unknown terms in the model

equations. In this case, the additive stochastic error is

drawn from the Gaussian distribution dbj
i ;N(0, Q),

where Q is the model error covariance.

The first adaptation made in the equivalent-weights

particle filter is to apply an additional term to the model

(5). This additional term works to provide a small re-

laxation toward the future observation at time n:

x
j
i 5 f (x

j21
i )1B(t)[yn 2h(x

j21
i )]1 cdb j21

i . (6)

The factor B(t) is a matrix specifying the strength of the

relaxation dependent on the distance in time t to the

next observation, and h(x j21
i ) is a measurement operator

that projects the model state onto the observation space,

but at time j2 1. The term cdb j21

i still represents unknowns

in the model equations but is now drawn from N(0, Q̂).

This reflects the fact that the model error may now have

also potentially changed because of the change in model

equation, with new model error covariance Q̂.

As a consequence of this additional term, the weight

of each particle is affected. This can lead to the particles

already having significant differences in weight, and

hence filter degeneracy, before the likelihood is even

taken into account (Ades and Van Leeuwen 2013).

2) EQUIVALENT WEIGHTS

The second adaptationmade to the basic particle filter

is therefore to ensure the majority of particles all have

equivalent weights when estimating the posterior PDF.

The relaxation term is applied to the model equations

over all but the last time step before the analysis (4). In

the final time step the model state of a chosen percent-

age of particles is set according to

xni 5 f (xn21
i )1aiK[y

n 2H f (xn21
i )]1 ~Q1/2jni , (7)

where K 5 QHT(HQHT 1 R)21. The matrix Q is the

original model error covariance, H is a linearization of

the measurement operator h(�), andR is the observation

error covariance matrix. The term ~Q1/2jni is the sto-

chastic error term. In this case, jni comes from a mixture

density and the use of ~Q1/2 is representative of the fact

that the proposal transition density has again changed.

The definition of ai is given in the appendix. This choice

of model evolution ensures equivalent weights for the

specified percentage of particles. The remaining parti-

cles will have a smaller weight and so will be abandoned,

returning as duplicates of the kept particles when re-

sampling is applied (Kitagawa 1996).

The theoretical justification of why each particle is

chosen in this manner is again contained in Ades and

Van Leeuwen (2013).

c. Discussion

It is widely recognized that geophysical models are an

approximation to the truth and so stochastic error is

necessary to represent unknowns in the model equa-

tions. Although the addition of stochastic model error

will have an impact on the gravity waves, it is assumed

that the stochastic error term is sufficiently small that in

general the balances are preserved. The equivalent-

weights particle filter requires extra terms to be added

to the deterministic model equations in addition to the

stochastic error term. In previous papers, the size of the

additional relaxation term in (6) has been kept smaller

than the stochastic error term (Ades and Van Leeuwen

2013, 2014), the implicit assumption being that it would

not therefore have an increased impact on gravity waves
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beyond that induced by the model error. The validity of

this assumption is now investigated in section 6c.

The additional term required in the equivalent-

weights step (7) is of more interest. The factor ai in this

term dictates the change in model state required by each

particle in order to ensure the weights of the majority of

particles are equivalent. It was found with both the

Lorenz 63 system of equations (Ades and Van Leeuwen

2013) and the barotropic vorticity equation (Ades and

Van Leeuwen 2014) that this often led to a change in

model state comparable to or larger than that induced

by the deterministic model equations. The concern is

whether this change causes the introduction of sufficient

additional gravity waves to destroy the dominance by

the dynamical balances (examined in section 6d). It

should be noted that, to a rough approximation, varia-

tional and EnKF-based methods would enforce similar-

sized changes in model state in the primitive equation

model, as will be shown later in this article.

3. Primitive equation model

a. Single-layer ocean model

To answer the questions raised on dynamical bal-

ances, a single-layer primitive equation model is used.

The model is based on horizontal momentum equations

and a continuity equation and mimics a wind-driven

ocean as a reduced-gravity system:

›u

›t
1 u

›u

›x
1 y

›u

›y
2 f y1 g0

›h

›x
5

t(x)

rh
2ADu

›y

›t
1 u

›y

›x
1 y

›y

›y
1 fu1 g0

›h

›y
52ADy,

›h

›t
1

›

›x
(hu)1

›

›y
(hy)5 0, (8)

where Du 5 =2u and similarly for y. The numerical

model used is a discretization of (8) and calculates per-

turbations in the depth of the layer e around a fixed

depthH5 500m. The total depth of the layer is given by

h 5 H 1 e, and a velocity field (u, y) is present over the

two-dimensional domain. The reduced gravity is repre-

sented by g0 and is chosen equal to 0.005 3 9.81 s22. A

b-plane approximation, f5 f01 by, is used, where f05 13
1024 s21 is chosen to be at the center of the domain in the

meridional direction and b 5 2 3 10211 (ms)21. A wind

stress t(x)/(rh) is applied across the domain that induces an

eastward flow in the center, where f 5 f0, and a westward

flow in the north and south. This, togetherwith the pressure

gradient terms g0›h/›x and g0›h/›y, drives the flow in the

system. The dissipation terms (2ADu and2ADy) are also
included, whereA5 100m2 s21, and represent momentum

sinks to unresolved scales. Stochastic error db5 (dbu, dby,

dbh)
T is added to the numerical approximation of the

deterministic model (8) at each time step representing

unknown and subgrid-scale processes that influence the

resolved scales.

The equations are solved for u, y, and eover a domain of

100 points in the zonal and 200 points in themeridional, so

the system has a dimension of 60000. The grid spacing is

Dx 5 10km, Dy 5 10km, and so in physical space the

domain is 2 000000km2. The space discretization is on an

Arakawa C grid and a zero flow boundary condition is

imposed, with u5 y5 0 and ›h/›n5 0, with n the outward

pointing vector at all the boundaries. The time dis-

cretization used in the majority of time steps is a leapfrog

schemewithDt5 50 s.A forwardEuler scheme is used for

the initial time step, the time step immediately following

an observation analysis time, and every fiftieth time step.

The fiftieth time step Euler scheme is introduced to avoid

interference from the computational mode in the leapfrog

scheme. The stochastic term was implemented using the

Euler–Maruyama scheme in all cases.

This single-layer primitive equation model was used

since it is a relatively simple model that incorporates

both gravity waves and dynamical balances. The pa-

rameters can be chosen such that the model either rep-

resents the atmosphere or ocean. Both would be equally

appropriate to assess the impact of the equivalent-

weights particle filter, since the focus of this article is

on the dynamics of the gravity waves rather than on the

physics of the system. Here, the parameters ensure that

themodel is representative of an ocean, since this causes

a longer dispersion time for any spuriously introduced

gravity waves. This leads to greater clarity when attrib-

uting any additional gravity wave energy to the con-

stituent parts of the data assimilation process.

b. Balances and gravity waves

The balance prevalent in the primitive equation

model is geostrophic balance:

fu52g0
›h

›y

f y5 g0
›h

›x
. (9)

Figure 1 shows the u field at day 200, the equivalent

geostrophic u flow, calculated via

u52
g0

f

›h

›y
, (10)

and the normalized absolute percentage difference be-

tween the two fields, which is the unbalanced, ageostrophic
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flow. While the majority of the flow is close to geo-

strophic, the ageostrophic flow can be as much as 50% of

the actual flow, generally where there are steep gradients

in the pressure field.

Gravity waves are also present in the system and these

will closely adhere to the gravity wave dispersion

relationship

v25 f 20 1 g0H(k21 l2) , (11)

wherev5 2pf represents the angular wave frequency and

k5 2pk̂ and l5 2pl̂ are the angular wavenumbers in the x

and y directions, respectively. Here, f is the frequency and

k̂ and l̂ are the wavenumbers per unit distance.

c. Twin experiments

The twin experiments were performed using a truth

run from the stochastic model. The initial condition

for the truth run was generated by running the de-

terministic model forward in time from zero initial

conditions until day 200 when chaotic-like behavior was

observed. This was then perturbed by random error

dbinitial ; N(0, VxQ) to give the initial conditions for

the particles. The term Vx 5 5000 was found to give the

appropriate perturbations of approximately 10% of the

initial model state, which led to a sufficient spread in

the initial condition. The high number for Vx is necessary

in order to counteract the scaling induced by the for-

mulation of the matrixQ (see below). The random error

db;N(0, Q)5N(0, VbQ), used for both the truth run

and the particles, was generated using a value of Vb 5
0.052Dt, which led to a kdbk that was approximately

10% of kf (x)k in the u and y fields and 5% in the e field.

Perturbations of approximately 10% were used since

this is the size of typical error in the atmospheric forcing

for ocean models (Brodeau et al. 2010). The same cor-

relation matrix Q was used for both the initial condition

perturbations and the model error. The geostrophic

balance relationships and boundary conditions between

the variables were maintained in the perturbations by

using the control variable transforms U and ~U to form

the correlation matrix Q, so that Q5U ~UQ~c
~UTUT. The

quantity U transforms the streamfunction c into u, y,

and h and ensures the correct geostrophic balances (see

section 4 for more details). The transform ~U takes the

streamfunction in the spectral domain to the stream-

function in the physical domain. The sine transform was

used since it conserves the no flow boundary conditions.

The correlation matrix Q~c
is now specified in Fourier

space and is chosen to be a diagonal matrix. A Gaussian

variance spectrum was used to specify the correlations

with a length scale in wavenumber space of 13 1025m21.

This is equivalent to waves in physical space with a wave-

length of l 5 50km. The Gaussian correlation function

FIG. 1. (a) The actual u field at day 200 of the stochastic primitive equation model compared to (b) the equivalent u field that is

in geostrophic balance and (c) the absolute normalized percentage difference between the two. Where values in the actual u field were

,0.1m s21, the percentage difference was set to zero to avoid erroneous high differences caused by the normalization. It is clear that the

ageostrophic flow can be as high as 50% of the actual flow where there are steep gradients that are not in geostrophic balance.
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was chosen since it is simple to compute and the length

scale ensures model error perturbations that are larger

than the grid scale of 10km, but smaller than the length

scale of the dominant features. This size of model error

was specifically chosen since the stochastic error in the

equations represents inaccuracies in the deterministic

model when compared to the truth arising from subgrid-

scale processes and physics.

Observations were generated as follows. Model states

were taken of the perturbation in sea surface height

e only, where h5H1 e, from the truth run every 10 days

for the full 120-day model run and every 20 days for the

gravity wave experiments. The observations were cre-

ated by sampling the e field every 30 km and perturbing

the values by observation error taken from N(0, R),

where R 5 VyI. The term Vy is a scalar with values of

(5m)2 corresponding to h. Since the model is a reduced-

gravity model, observation errors in the measurement at

the top of the layer of approximately 2.5 cm correspond

to perturbations in the thickness of h of 5m. The ob-

servation errors, pattern, and time spacing for the full

model run were chosen to provide a crude approxima-

tion to the actual observing patterns of radar altimeter

satellites, which observe the height of the sea surface

with centimeter accuracy.

The equivalent-weight parameters gU, gN, and � were

set equal to 1025, 1025, and 0.001/N, respectively (see

the appendix). The matrices Q̂ and ~Q [see (6) and (7),

respectively] were set equal to Q. The factor B(t) in (6)

was chosen to be

B(t)5 bp(t)QHTR21 , (12)

where b5 50 and p(t)5 t, with t 5 0 at the time of the

previous observation and increasing linearly to t 5 1 at

the new observation time. There were 24 particles used

for all the experiments, and 100% of the particles were

retained in the equivalent-weights step, since this gives

the largest value of the equivalent-weights term

kaiK[y
n 2Hf (xn21

i )]k [see (7)].

4. Balances in the equivalent-weights particle filter

There are four terms that have the potential to disrupt

both the approximate dynamical balances given in

(9) and the nonlinear balances in the system: the

terms B(t)[yn 2 h(x j21
i )], and cdb j21

i in (6) and the terms

aiK[y
n 2Hf (xn21

i )] and ~Q1/2jni from (7).

In the truth run of the twin experiment, the truth is run

forward in time according to (5). To generate the sample

db j21
i ;N(0, Q), it is standard practice to first generate

a sample j j21
i ;N(0, I) and then to multiply this byQ1/2,

so that dbj21
i 5Q1/2j j21

i . Similarly the sample of random

error from the relaxation transition density given by (6) is

generated using cdbj21

i 5 Q̂1/2ĵ
j21

i , where j j21
i ;N(0, I).

In this article Q̂5Q, hence the random error used in the

true model equations and that used for the relaxation

model equations is drawn from the same distribution. This

term in the relaxation model equation will therefore pro-

duce gravity wave activity in a comparable manner to the

stochastic term in the truth and so the gravity wave energy

will be similar to that in the truth. The effect of different

permutations of this stochastic error on gravity wave en-

ergy is studied in detail in section 6a. The random error

added under the equivalent-weights step is ~Q1/2jni , where

now the random error jni is drawn from a mixture density

as detailed in the appendix. The amplitude is significantly

lower than that of the model error, so no extra distur-

bances to the gravity wave energy is expected to arise from

this term.

The relaxation matrix B(t) is given in (12), and the

equivalent-weights term is expanded to

aiQHT(HQHT 1R)21[yn2Hf (xn21
i )] . (13)

Common to all four of the additional perturbations is

the multiplication by Q or Q1/2. The matrix

Q5VbQ5VbU
~UQ~c

~UTUT (14)

is defined for the primitive equationmodel via the control

variable transforms U and ~U. The term U takes the

streamfunction c and transforms it into u, y, and h via

u52
›c

›y
, y5

›c

›x
, h5

f0
g0
c . (15)

Given that

h5
f0
g0
c0c5

g0

f0
h , (16)

the geostrophic balance relationships

u52
g0

f0

›h

›y

y5
g0

f0

›h

›x
(17)

are enforced by this transformation. For example, given

a vector (ub yb hb)
T 5Q(u y h)T 5VbU ~UQ~c

~UTUT(u y h)T,

then UT first takes the vector in physical space and

transforms it into the streamfunction in physical space,
~UT then transforms the resultant vector into the equiv-

alent streamfunction in spectral space,Q~c
introduces the

appropriate correlations to the spectral streamfunction

vector, and ~U transforms the vector back into the
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streamfunction in physical space before finally U takes

the streamfunction vector in physical space and trans-

forms it into the appropriate values of ub, yb, and hb via

(15). It is this final transformation that ensures the vec-

tor (ub yb hb)
T is in geostrophic balance as given by (17).

Since the multiplication by the matrix Q or Q1/2 en-

sures geostrophic balance through the use of the U

transform, each of the additional perturbations (as well

as the addition of random error) should in itself be a

geostrophically balanced model state. However, there is

no guarantee that these separately geostrophically bal-

anced model states added to f (xj21
i ) or f (xn21

i ) will pro-

duce a model state for xji or x
n
i that is without additional

unbalanced perturbations leading to the introduction of

spurious gravity waves.

5. Representation of the posterior PDF

The first test to judge how well the equivalent-weights

particle filter is able to perform in a model that includes

balances is to compare the mean of the particles to the

true model state used in the twin experiments. After 120

days (12 observation analysis times), it was found that

the mean of the equivalent-weights particle filter pro-

vided a good match to the truth with the equivalent-

weight parameter values used (Fig. 2 shows this for e, but

it was also found for the u and y variables). This indi-

cates that the equivalent-weights particle filter is able

to produce representative model states in a high-

dimensional model with multiple variables with com-

plex relationships. Since the focus of this article is on the

effect of the equivalent-weights particle filter on dy-

namical balance, a full consideration of the performance

of the scheme is not given here. For an in-depth dis-

cussion on the behavior of the scheme in a high-

dimensional model, see Ades and Van Leeuwen (2014).

These results could indicate that the scheme is not

causing an excessive number of spurious gravity waves,

since this would lead to unbalanced model states being

generated by individual particles and a mean un-

representative of the truth. It is also possible, however,

that there is simply not the same displacement in state

space under the equivalent-weights step as was gener-

ated by the Lorenz 63 (Ades and Van Leeuwen 2013) or

FIG. 2. (a) The true model state for e in the primitive equation after 120 days compared to (b) the mean of 24

particles under the conditions given in section 3c, with a contour interval of 17.5m. It is clear that the equivalent-

weights particle filter provides a close match to the mean, although small differences are evident.
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barotropic vorticity (Ades and Van Leeuwen 2014)

models. Table 1 shows the l2 norms of the different con-

stituent terms that are implemented as part of the

equivalent-weights particle filter. The factor b5 50.0 in the

relaxation matrix B(t) (12) was specifically chosen to en-

sure that the relaxation term was smaller than the sto-

chastic error, and this is demonstrated in Table 1. What is

also immediately apparent is that the size of the equivalent-

weights term is more than 100 times the size of the dis-

placement in state space induced by the deterministic

model equations when 100% of particles are retained.

However, this is an average over each analysis time, and

each particle and is being skewed by a few particles with

a large equivalent-weights term. If each individual analysis

time is considered independently for a single representative

particle, then this number is generally O(10) times larger

than the l2 norm of the change inmodel state caused by the

deterministic model equations (Table 2). Regardless of

which table is considered, using the equivalent-weights

particle filter in conjunction with this primitive equation

model is causing a substantial change in model state

through the application of the equivalent-weights step.

The conclusion can be drawn that the equivalent-weights

particle filter is not creating sufficient additional gravity

waves in this primitive equation model to create an en-

semblemean unrepresentative of the truth, despite the size

of the equivalent-weights term. Nonetheless, other models

may be more sensitive to changes in model state and the

equivalent-weights term is large enough that further ex-

amination of the effect on gravity waves is necessary.

6. Gravity waves in the equivalent-weights
particle filter

The effect of the additional terms on gravity waves

was quantified using their known dispersion relationship

(11). To calculate the v(k) relation from the model

simulations, where k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2

p
, samples were taken of

the full model state of eminus 10 grid points around the

boundary in the x direction and 20 grid points in the y

direction, every hour for 20 days. These samples were

then put through a three-dimensional discrete fast

Fourier transform (FFT) to calculate the spectrum re-

lated to the constituent frequencies of the waves:

X~v, ~k, ~l 5 �
T

t51
�
N

i51
�
M

j51

Xt, i, j«
(t21)(~v21)
T «

(i21)( ~k21)
N «

(j21)(~l21)
M ,

(18)

where

«N 5 exp

�
22pi

N

�
(19)

(definition taken from the MATLAB fftn function used

to calculate the FFT). The values of ~v, ~k, and ~l represent

the number of waves per 20 days (~v), per 800 km ( ~k), and

per 1600 km (~l).

The gravity wave dispersion relationship used for this

analysis was

v25 f 20 1 g0Hk2 , (20)

where ~k was set equal to ~k5 (2 ~k)2 1 ~l 2, ensuring that it

represents wavenumbers over a common distance of

1600 km. However, this meant some of the values of ~k

were duplicates. When this occurred, the corresponding

values of the FFT were summed over all possible com-

binations of ~k and ~l, leading to that value of ~k.

Figure 3 shows the power spectrum of k̂5 ~k/16 against

v̂5 ~v/20, where k̂ is the number of waves per 100 km

TABLE 1. The l2 norms ðk�ki,n 5Ei,n[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K

k51(�)2k
q

], where K

is the dimension of eÞ of the additional terms required by the

equivalent-weights particle filter compared to the change in model

state due to the deterministic model equations. The deterministic

change in state space [f(x)], stochastic error (db), and relaxation

term fr5B(t)[yn 2h(xn21
i )]g have been taken in the second to last

time step before an observation. The equivalent-weights term

few5aiK[y
n 2Hf (xn21

i )]1 ~Q1=2jni g has been taken for each anal-

ysis time. Apart from the initial condition perturbation (ic), all

norms have been averaged across all analysis times (n) and all

particles (i).

u y e

kf (x)ki,n 8.6 3 1024 8.6 3 1024 0.09

kdbki,n 8.3 3 1025 8.5 3 1025 0.005

krki,n 2.3 3 1027 2.5 3 1027 2.7 3 1025

kewki,n 0.1 0.1 13.6

kicki 2.6 2.6 162.4

TABLE 2. A comparison of the l2 norms [k�k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K

k51(�)2k
q

,

where K is the dimension of e] for the relaxation term fr5B(t)

[yn 2h(xn21
i )]g and the equivalent-weights term few5aiK[y

n 2
Hf (xn21

i )]1 ~Q1/2jni g for a specific particle at each analysis time. The

l2 norms of the deterministic model term [f(x)] and the stochastic

error (db) have also been included for comparison.

Obs time kf (x)k kdbk krk kewk
10 0.23 5.00 3 1023 2.31 3 1025 0.74

20 0.14 5.62 3 1023 2.27 3 1025 7.89

30 0.11 5.22 3 1023 2.47 3 1025 1.33

40 0.08 5.46 3 1023 2.42 3 1025 0.85

50 0.07 5.14 3 1023 2.78 3 1025 1.27

60 0.06 4.91 3 1023 2.48 3 1025 1.27

70 0.06 5.40 3 1023 2.96 3 1025 1.79

80 0.06 5.10 3 1023 2.96 3 1025 1.78

90 0.06 5.19 3 1023 3.11 3 1025 0.95

100 0.06 5.25 3 1023 2.66 3 1025 1.67

110 0.07 5.39 3 1023 2.48 3 1025 1.90

120 0.07 5.22 3 1023 2.55 3 1025 1.38
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and v̂ is the frequency of waves per day. However, the

gravity waves’ dispersion relationship relates to the an-

gular frequencies k5 2pk̂ and v5 2pv̂. The values of f0,

g0, and H are also in s21, ms22, and m, respectively. To

transform them into the correct values per day and per

100km requires transforming f0 into f̂ 0 5 (243 603 60)f0
and g0H into ĝ0Ĥ5 [(243 603 60)2/100 0002]g0H. This

leads to the gravity wave dispersion relationship

v̂5
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f̂
2
0 1 ĝ0Ĥ(2pk̂)2

q
(21)

shown as the blue line in Fig. 3.

To quantify the energy associated with gravity waves,

bands were chosen with different widths to surround the

gravity wave dispersion relation (Fig. 3b). The narrow-

est bandAwas chosen to have a width that incorporated

the areas of greatest increase, but not the total spread of

the energy that could potentially be associated with

gravity waves. The band C was chosen wide enough to

ensure that the vast majority of gravity wave energy

would be captured, and B formed an intermediate

measure. It was assumed that all energy below either

band A, B, or C could be approximately associated with

low-frequency motions such as Rossby wavelike fea-

tures and nonlinear oscillations of the recirculation cells.

Similarly, energy lying above a particular band relates to

high-frequency motions such as the stochastic error. The

power spectrum was summed over all the points lying

within these categories, and the percentage change be-

tween different model runs calculated. In general, very

little difference was seen between the results from the

different bands. The conclusions drawn below refer only

to band B, but similar deductions can be made for bands

A and C.

a. Stochastic error

If the primitive equation model is run deterministically

from day 0–20, without the addition of the stochastic

FIG. 3. (a) The absolute spectrum of the truth run of the model from day 0 to day 20 compared to (b) a particle

model run with a perturbed initial condition. To generate the plots, samples were taken of the model state excluding

grid points that are ,100 km from the east–west boundaries and ,200km from the north–south boundaries every

30min. The solid blue line represents the gravity waves dispersion relation, the magenta lines represent band A, the

black lines represent band B, and the dashed blue lines represent band C (see text). The contour lines are drawn in

gray and so areas that appear predominantly gray are areas with lower energy. The sum of the power spectrum below

each of the band lines was taken as the low-frequency motions and above as high-frequency motions. The increased

gravity wave energy due to the initial condition perturbation is clear.
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error, then there is slight evidence of the gravity wave

relationship appearing at longer wavelengths and lower-

frequency waves. However, the majority of the energy

can be attributed to slow, large-scale, and balanced

motions. Very little difference is seen with the addi-

tion of stochastic error (Fig. 3a). The sum of the power

spectrum values associated with gravity waves for band

B for the deterministic model run is 4.96 3 1028.

In comparison, the stochastic model run has a value of

5.283 1028, an increase of 6.5%. As would be expected,

the greatest increase is seen in the sum of the power

spectrum over all values above the band B line, which

can be attributed to high-frequency motions. This is

5.623 10211 for the deterministic model run and 1.743
10210 for the stochastic model run, an increase of 210%,

although still with very low energy values. No real dif-

ference is seen in the energy of the low-frequency mo-

tions. It is this stochastic model run that is taken as the

truth and from which the observations are generated in

the twin experiments. It therefore forms the base line to

which the model runs for each particle are compared to

in the following experiment.

The first experiment to be run was to quantify the

effect of using different samples of stochastic error for

each particle. This was done so that the impact of the

relaxation and equivalent-weights term could be con-

sidered in comparison to the difference in gravity wave

energy caused by changing the stochastic error. To iso-

late the effect of the stochastic error, the initial condi-

tion was kept the same as the truth for each particle and

no relaxation term was applied. Table 3 shows the

maximum, mean, and minimum percentage change

compared to the truth across the particles for band B

(with associated low- and high-frequency motions). Al-

though on average a 2%decrease in gravity wave energy

occurred, the particles spanned the range between

a 4.6% decrease and a 0.2% increase. It is to be expected

that different permutations of stochastic model error

would lead to variations in gravity wave energy over the

20 days, and this is verified by the presence of both

positive and negative changes.

b. Initial conditions

The next experiment was designed to test the impact

of using different initial conditions for each of the par-

ticles on the gravity wave energy. Similar to the sto-

chastic error experiment, this was undertaken to provide

comparative percentage changes for the relaxation and

equivalent-weights steps. In the equivalent-weights

particle filter, the initial condition for each particle is

generated by perturbing the ‘‘true’’ initial conditionwith

random error drawn from N(0, VxQ) (see section 3c).

The matrix Q ensures the perturbation is in geostrophic

balance, and the value of Vx is chosen such that the

perturbation size is approximately 10% of the overall

field for u and y. To judge the impact of this large but

geostrophically balanced perturbation on the gravity

waves, the power spectrum of each particle without re-

laxation (Fig. 3b) was compared to the true model run

from day 0 to 20 (Fig. 3a). The stochastic error for each

particle was fixed to be the same as the truemodel run so

that any changes are specifically related to this initial

condition perturbation.

It was found that the initial condition perturbation

had an extremely large impact on both the gravity wave

energy and the high-frequencymotions. Figure 3b shows

the spectral energy of the model run when initial con-

dition perturbations are included. A much higher grav-

ity wave energy is visible along the theoretical gravity

wave dispersion relation. The bending away from the

theoretical dispersion relation at higher wavenumbers is

simply related to numerical dispersion of the gravity

waves in the model using the leapfrog scheme on a C

grid (see, e.g., Adcroft et al. 1999, his Fig. 5). The av-

erage gravity wave energy change across all the particles

was a 4.8 3 104% increase and an even larger average

percentage increase of 11.83 104%was observed for the

high-frequency motions. Despite the fact that the initial

perturbation is in geostrophic balance, it leads to a large

increase in the amount of gravity wave energy. It should

TABLE 3. The percentage changes in the sum of the power

spectrum due to the listed perturbations for band B. The equivalent-

weights particle filter was run with observations every 20 days and

100% of the particles were retained to ensure the greatest change

in model state at the equivalent-weights step. The random error

db for the truth run and each particle of the equivalent-weights

particle filter is sampled from db ; N(0, VbQ), where Vb 5
0.052Dt, and the initial condition perturbation dbinitial ; N(0,

VxQ), where Vx 5000 (see section 3c for full details of the pa-

rameters). The output of all 24 particles was considered, and the

table shows the maximum, mean, and minimum percentage

changes observed over the particle values.

Low-

frequency

motions

Gravity

waves

High-

frequency

motions

Stochastic

error

Max 0.01 0.20 2.67

Mean 0.01 22.25 21.27

Min 0.0 24.58 26.05

Initial condition Max 0.76 63 174 152 515

Mean 0.07 48 270 118 574

Min 21.00 36 637 82 893

Relaxation Max 0.0 0.0 0.0

Mean 0.0 0.0 0.0

Min 0.0 0.0 0.0

Equivalent

weights

Max 0.02 1.45 1.61

Mean 0.00 0.21 0.28

Min 20.02 20.79 22.01
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be noted at this point that the initial condition pertur-

bation is not unique to the equivalent-weights particle

filter and a similar perturbation would be applied to

generate the ensemblemembers in an ensembleKalman

filter (see, e.g., Evensen 2003).

The dissipation rate of the gravity wave energy asso-

ciated with this initial condition can be observed by

comparing the gravity wave energy every 5 days for the

true model run in contrast to a model run starting from

a perturbed initial condition (Fig. 4). The slow dissipa-

tion rate associated with using this single-layer ocean

model is evident, and it is not until day 100 that the

gravity wave energy approaches the values associated

with the true model run. Although the model has a rel-

atively slow dissipation rate, there is still clearly an ex-

ponential decrease in gravity wave energy over the first

20 days. The percentage increases because of the per-

turbed initial condition given above are for a 20-day run

of themodel. Similar analyses were also carried out for a

5- and 10-day model run to assess whether the higher

amount of gravity wave energy over these periods would

affect the results. As would be expected, the exact per-

centage values change; however, the conclusion that the

initial condition perturbation leads to a significant in-

crease in gravity wave energy and high-frequency mo-

tions remains the same regardless of the number of days

chosen.

c. Relaxation proposal density

To test the effect of applying the relaxation term in the

equivalent-weights particle filter, a model run from day

0 to 20was first generated for each particle with perturbed

initial conditions and different stochastic error samples

but without the relaxation term. The particles were then

run from the same initial conditions with identical sam-

ples of model error but now the relaxation term was

added. Therefore, any changes in gravity wave energy

between the two versions for each particle can be solely

attributed to the relaxation toward the future observation.

It was found that the addition of the relaxation term

actually had no effect on any part of the spectrum (Table

3). This can be attributed to the fact that the size of the

relaxation term is considerably smaller than the sto-

chastic error term (Table 2). The same analysis was

carried out using days 0–5 and days 0–10 and again, no

difference was found. As noted in the previous sub-

section, the initial condition perturbation influence does

not dissipate until around day 100. Hence, the analysis

was also carried out comparing the model run with and

without relaxation from day 100 to 120 to avoid any

potential influence on the results from the initial con-

dition. It was also found that the relaxation term had no

effect in this case.

In Ades and Van Leeuwen (2013), it was shown with

the barotropic vorticity model that increasing the size of

the stochastic error leads to an increase in the size of the

relaxation term. A similar approach can be used here to

increase the size of the relaxation term. Increasing the

stochastic term by a factor of 105 leads to a 107 increase

in the relaxation term. Again, the particles with this in-

creased stochastic error but no relaxation can be com-

pared to the same particles when the now greatly

increased relaxation is added. In this case, the results

show that the addition of the relaxation term actually led

to a decrease in the gravity wave energy in band B for all

particles (22% to 211%). One hypothesis for why this

is occurring is that the relaxation term is actually ap-

plying a damping to the propagation of the gravity waves

caused by this inflatedmodel error. The slight relaxation

toward the fixed observations at every time step reduces

the ability of the gravity waves to freely evolve and re-

sults in an overall reduction in the gravity wave energy

for each particle.

d. Equivalent-weights proposal density

The size of the equivalent-weights term varies

depending on the analysis time chosen. To address the

impact of the displacement in state space caused by this

term, the day 100 analysis time was used. The day 100

analysis time has a representative l2 norm for the

equivalent-weights displacement (Table 2), but is suffi-

ciently far from the start of the model run that the

FIG. 4. The gravity wave energy associated with the true model

run (red line visible just above the x axis) compared to the gravity

wave energy when the initial condition is perturbed (black line). In

both runs, the gravity wave energy in band B (see Fig. 3) was cal-

culated for each 5-day period. The exponential decay of the addi-

tional gravity wave energy introduced by perturbing the initial

condition is evident.
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majority of gravity wave energy caused by the initial

condition perturbation should have dispersed.

To assess the impact on gravity waves of the

equivalent-weights term, the model state of each parti-

cle in the full model run was outputted both before and

after the equivalent-weights step at day 100. These model

states were then taken as the initial conditions in a 20-day

model run, for which the stochastic error was kept fixed.

No relaxation term was applied to ensure that any dif-

ferences in gravity wave energy are caused only by the

change in model state induced by ensuring equivalent

weights at day 100.

On average, a very small increase in gravity wave

energy in band B was observed across all the particles

(0.2%; see Table 3). The changes ranged from a 0.8%

decrease to a 1.5% increase. Similar results were found

when the same assessment was carried out for a 10-day

model run (21.5% to 1.7%) and for a 5-day model run

(20.7% to 1.2%). Comparing this to the percentage

change in gravity waves associated with the different

permutations of stochastic error (24.6% to 0.2%) in-

dicates that this change is of the same order.

To put the size of the equivalent-weights term in con-

text, the typical change inmodel state of four-dimensional

variational data assimilation (4D-Var) or the ensemble

members in the EnKF can be approximated by

P fHT(HP fHT 1R)21[y2H(xi)] . (22)

To gain a very rough estimate of the size of this term, the

assumption is made that P f is diagonal with entries s2
x,

representing the average variance in each e variable

across the ensemble. The observation error variance for

e is taken as Vy 5s2
y 5 25 for the diagonal Rmatrix, and

for this order of magnitude estimate, it is assumed that

e is observed at each grid point. It is also necessary to

understand the change in model state coming from the

factor [y 2 H(xi)]. The value of interest is

ky2H(xi)k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trf[y2H(xi)][y2H(xi)]

Tg
q

’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr(R1HPfHT)

q
. (23)

Taking all these approximations together leads to

kPfHT(HPfHT 1R)21[y2H(xi)]k

’
s2
x(s

2
x 1s2

y)
1/2

(s2
x1s2

y)
kIKk , (24)

where K is the dimension of the e variable, which in this

case is 20 000. To evaluate this expression it is additionally

necessary to estimate s2
x. Taking the initial ensemble

spread of ;O(200), and using similar arguments to

those given above, this value can be approximated as

s2
x 5 1:4. This leads to changes in model state due to

EnKF or 4D-Var of O(40). Although these are very

crude approximations, they can be used to set the change

in model state caused by the equivalent-weights term in

context. The average change in model state due to the

equivalent-weights term is 13.6 (Table 1). Hence, the

change in model state of the equivalent-weights particle

filter and what could be expected for the EnKF or

4D-Var are roughly comparable for this experiment.

e. Discussion

The results presented above, both in conjunction with

the relaxation and the equivalent-weights proposal

densities, would suggest that the additional terms of the

equivalent-weights particle filter are not likely to cause

significant problems. The question remains as to what

extent these results then depend on the specific condi-

tions chosen for the model runs and on the model itself.

It has been noted in previous papers that the

equivalent-weights particle filter can be tuned depend-

ing on the performance measure of interest (Ades and

Van Leeuwen 2013) using the factor b in the relaxation

term (12) and the percentage of particles retained under

the equivalent-weights step (Ades and Van Leeuwen

2014). The parameters used to test the effect of the

equivalent-weights term in this article were artificially

chosen to ensure a worst-case scenario. Hence, a high

value of b is used and 100% of particles were retained

under equivalent weights, which leads to greater dis-

placement in state space than retaining a smaller per-

centage of particles. Using these parameter settings, the

l2 norm of the equivalent-weights term was of the same

order of magnitude for the primitive equation as that

observed for the barotropic vorticity equation (Ades

and Van Leeuwen 2014). However, it is possible that

larger changes in model state would be observed if the

model was run for longer or if a different model was

used.

To judge whether an increase in the size of the

equivalent-weights term directly results in an increase in

gravity wave energy, the l2 norm of the equivalent-

weights term for each particle was plotted against the

corresponding percentage change in gravity wave en-

ergy for band B (Fig. 5). No conclusive relationship

between the two was observed, which provisionally

leads to the conclusion that a larger equivalent-weights

term does not necessarily imply a greater increase in

gravity wave energy.

This conclusion is drawn by considering particles that

have relatively similar-sized equivalent-weights l2 norms

(0–2.1). The effect of a much greater change to the
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deterministic model state can be observed by consider-

ing the initial condition perturbation (154.8–170.0).

Again, no relationship was seen between the size of each

of the individual perturbations and the corresponding

changes to gravity wave energy (result not shown).

However, it does lead to a maximum percentage in-

crease in gravity wave energy (63 174%), substantially

larger than that observed due to the equivalent-weights

term (1.45%). The initial condition perturbation is

based on a sample of random error and so is different

from the change in model state due to the equivalent-

weights term, which is based on [yn 2Hf (xn21
i )]

(although both are in geostrophic balance). It does,

however, give an indication of the effect of amuch larger

perturbation and implies that a substantially larger

equivalent-weights term may still have the potential to

disrupt dynamical balance. Therefore, the issue of the

introduction of spurious gravity waves should not be

dismissed entirely.

7. Conclusions

Themajority of data assimilation schemes currently in

operational use have a mechanism through which pre-

dominantly balanced initial conditions are ensured. The

issue with these schemes is that they assume the poste-

rior PDF is a Gaussian, either globally or locally. As the

resolution and complexity of numerical models increase,

it becomes progressively more important that the full

posterior is understood and represented through the

initial conditions of forecasts, leading to a better un-

derstanding of the future uncertainty. The equivalent-

weights particle filter is a data assimilation scheme with

the potential to represent the full posterior PDF. It

avoids the filter degeneracy issue of particle filters

through additional terms added to the deterministic

model equations. These adaptations again bring into

question the problem of ensuring predominantly bal-

anced initial conditions.

This article addresses the potential impact of the

equivalent-weights particle filter on dynamical balance

and gravity waves through the use of a primitive equa-

tion model. The primitive equation model was used

since it incorporates both hydrostatic and geostrophic

balance, and gravity waves can be present under the

parameter settings chosen. To assess the effect of the

additional terms required by the equivalent-weights

particle filter, the energy spectrum of each particle was

calculated. The integral over the energy spectrum as-

sociated with the gravity wave dispersion relationship

was then evaluated both before and after the addition of

the extra terms.

The theoretical examination of the equivalent-

weights particle filter, together with the gravity wave

experiments, lead to four main conclusions: (i) The

equivalent-weights particle filter does not cause suffi-

cient imbalance to result in an ensemble mean un-

representative of the truth. (ii) Provided themodel error

covariance matrix ensures a geostrophically balanced

state through control variable transforms, then each

additional term required by the equivalent-weights

particle filter is itself in geostrophic balance. (iii) The

term associated with the relaxation proposal density (6)

actually causes a slight damping in the gravity wave

energy if the relaxation term is large enough. (iv) The

equivalent-weights term (7) only causes a small increase

in gravity wave energy on average, despite leading to

a change in model state up to 100 times larger than that

induced by the deterministic model equations. The in-

crease can be deemed insignificant when compared to

the difference in gravity wave energy due to the per-

mutation of the initial condition. It should be reiterated

at this point that variational and EnKF-based methods

also produce similar-sized changes in model state in the

analysis step.

In summary, the equivalent-weights particle filter is

not causing issues related to spurious gravity waves

disrupting dynamical balances in this primitive equation

model. Although these conclusions imply that the

equivalent-weights particle filter is not causing prob-

lems, the results are dependent on the model used and

the parameters chosen. There is no strong evidence that

using a different model or running the model for a lon-

ger period of time is likely to change this conclusion. The

only caveat to this statement is that somemodels, such as

convection-permitting models, are much more sensitive

FIG. 5. The size of the l2 norm of the equivalent-weights term for

each particle plotted against the percentage change in gravity wave

energy for the same particle. No relationship between the two is

evident.
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to the initial conditions used. Current data assimilation

schemes, both variational methods and the ensemble

Kalman filter, are already known to have issues when

used in conjunction with such models (Dance 2004; Sun

2005). It may be that the equivalent-weights particle filter

will also produce problems in these models. Data assim-

ilation in such sensitive conditions is an area of active

research and is one of the many reasons that nonlinear

data assimilationmethods, such as the equivalent-weights

particle filter, are such an important subject to explore.
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APPENDIX

Equivalent-Weights Particle Filter

The full equivalent-weights particle filter scheme is

summarized as follows:

(i) The prior PDF p(xn2r) is represented by N in-

dividual model states or particles.

(ii) Each particle is run forward to time n2 1 (the time

step immediately preceding the next available

observation vector), using the relaxation transition

density. If it is assumed that the stochastic term is

additive andGaussian at each time step, this relates to
d establishing the new model states using

x
j
i 5 f (x

j21
i )1B(t)[yn 2 h(x

j21
i )]1 cdb j

i , (A1)

where cdb j

i ;N(0, Q̂); and

d calculating the corresponding weights associated

with time step j according to

w
j
i } exp

�
2
1

2
[x

j
i 2 f (x

j21
i )]TQ21[x

j
i 2 f (x

j21
i )]

1
1

2
dbT

i Q̂
21dbi

�
,

(A2)

where the product of these weights up to time step

n 2 1 is stored for use as wrest
i at the new

observation time:

wrest
i 5 P

n21

j51

w
j
i . (A3)

(iii) The particles are moved forward to the new

observation time n in the last time step according

to the equivalent-weights proposal density. The

actual steps to calculate the model state for each

particle at time n is as follows:
d Calculate the maximum weight it is possible for

each particle to achieve via

wmax
i 5wrest

i exp

�
2
1

2
[yn2Hf (xn21

i )]T

3 (HQHT 1R)21[yn2Hf (xn21
i )]

�
.

(A4)

d Order the maximum weights for all the particles

and then chose wtarget such that a certain per-

centage of particles can achieve it.
d For the chosen percentage of particles where

wmax
i $wtarget, select the deterministic model

state according to

xi*5 f (xn21
i )1aiK[y

n2Hf (xn21
i )] , (A5)

where ai is defined according to

ai 5 11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 bi/ai

q
,

where ai 5 0:5[yn 2Hf (xn21
i )]TR21HK[yn 2Hf (xn21

i )] and

bi 5 0:5[yn2Hf (xn21
i )]TR21[yn2Hf (xn21

i )]1 logwtarget 2 logwrest
i , (A6)

and K 5 QHT(HQHT 1 R)21. It should be noted that

although K is similar to the Kalman gain matrix, in this

case the model error covariance Q replaces the more

standard Pf of the Kalman, or the ensemble Kalman,

filter. Otherwise the model state is given by

xi*5 f (xn21
i ) . (A7)

d Add stochastic error Q1/2jni to the deterministic

model state xi* to find the final particle model
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state xni at time n. This error comes from the

mixture density given by

q̂(jn j xi*)5 (12 �) ~Uk(0,gU)1 �N(0,g2N I) . (A8)

To sample from the mixture density, a value u is

sampled from u ; U[0, 1]. If u , �, then

jni ;N(0, g2
N I), otherwise jni ;

~Uk(0, gU).
d The final weight of each particle is then calcu-

lated according to

wn
i 5

wrest
i p(xni j xn21

i )p(yn j xn21
i )

q(xni j xn21
i , yn)

, (A9)

where

wrest
i p(xni jxn21

i )p(yn jxn21
i )

5wrest
i exp

8>>><>>>:
2
1

2
[xni 2f(xn21i )]TQ21[xni 2 f(xn21i )]

2
1

2
(yn2Hxni )

TR21(yn2Hxni )

9>>>=>>>;,

(A10)

and

1

q(xni j xn21
i , yn)

5

(
11

�

(12 �)

�
2

p

�k/2

3
gkU
gN

exp

�
2
1

2
jn

T

i (g2N I)
21jni

�)21

, (A11)

if 2gU # ji,j # gU, "j 5 1, . . . , k, and

1

q(xni j xn21
i , yn)

5

(
�

(12 �)

�
2

p

�k/2

3
gkU
gN

exp

�
2
1

2
jn

T

i (g2N I)
21jni

�)21

, (A12)

otherwise.

(iv) The weights of the particles are normalized by the

sum of all the weights of the particles. The ensem-

ble of particles together with their weights now

represent the posterior PDF p(xn j yn).
(v) Finally, the particles are resampled so that they

once again all have weight equal to 1/N. This

step is required since only the percentage of par-

ticles that are able to achieve the target weight

will have almost equal weights under the equivalent-

weights step. The remaining particles will have

smaller weights and so will be resampled as

duplicate copies of the equivalently weighted

particles. The resampled ensemble of particles

can now be run forward to the time of the next

observation vector.
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