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Introduction

Red blood cell transfusions (RBCT) remain the cornerstone
of supportive care in lower-risk myelodysplastic syndrome
(LRMDS) [1]. Transfusion dependency in LRMDS patients

is associated with inferior outcomes, mainly attributed to
severe bone marrow failure [2]. However, iron toxicity, due
to frequent RBCT or ineffective erythropoiesis, may be an
additional negative prognostic factor [3–6]. Recently, much
progress has been made in unraveling the iron metabolism.
The peptide hormone hepcidin is the key regulator by
inhibiting iron uptake through degradation of ferroportin, a
cellular iron exporter [7]. Erythroferrone and GDF15, pro-
duced by erythroblasts, inhibit hepcidin production, which
leads to increased uptake and cellular release of iron for the
purpose of erythropoiesis [8].
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The pathophysiology of iron metabolism in MDS is still
not completely understood. Exceedingly high reactive
oxygen species (ROS) levels are associated with iron toxi-
city, disease development, and progression in MDS patients
[9–12]. Malondialdehyde (MDA), resulting from lipid per-
oxidation of polyunsaturated fatty acids, is a biomarker of
oxidative stress [10, 12]. Currently, little is known about the
prognostic impact of ROS in MDS patients.

The aim of this study is twofold: (1) describe iron and
oxidative stress parameters over time in LRMDS patients
and (2) to assess their effect on overall and progression-free
survival.

Materials and methods

The EUMDS registry prospectively collects observational
data on newly diagnosed LRMDS patients from 148 centers
in 16 countries in Europe and Israel as of January 2008. All
patients provided informed consent. Clinical data were col-
lected at baseline and at each six-monthly follow-up visit.
Serum samples were collected prospectively at each visit from
256 patients included in six participating countries. Conven-
tional iron parameters were measured with routine assays. We
additionally analyzed hepcidin, growth differentiation factor
15 (GDF15), soluble transferrin receptor (sTfR), non-
transferrin bound iron (NTBI), labile plasma iron (LPI), and
MDA. Subjects were prospectively followed until death, loss
to follow-up, or withdrawal of consent.

All iron parameters were measured centrally at the
department of Laboratory Medicine of the Radboudumc,
Nijmegen, The Netherlands. Serum samples were collected
just prior to transfusion in transfusion-dependent patients
and stored at −80 °C. Details on the assays and reference
ranges of hepcidin, GDF15, sTfR, NTBI, LPI, and MDA
are provided in the supplement.

The Spearman rank test was used to evaluate correlations
between iron parameters. We stratified the results by transfu-
sion dependency per visit and the presence of ring side-
roblasts. When evaluating temporal changes in iron
parameters, with linear quantile mixed models, we excluded
patients from the timepoint they received iron chelation ther-
apy. Overall survival (OS) was defined as the time from MDS
diagnosis to death or, in case of progression-free survival, to
date of progression or death; patients still alive at the end of
follow-up were censored. Time-dependent Kaplan–Meier
curves and cox proportional hazards models were used.

Results

In total, 256 consecutive patients, were included in this
study. Over five six-monthly visits, 1040 samples were

Table 1 Baseline characteristics.

N (%)

Total 256 (100.0)

Sex

Males 169 (66.0)

Females 87 (34.0)

Age

35–44 2 (0.8)

45–54 7 (2.7)

55–64 51 (19.9)

65–74 78 (30.5)

75+ 118 (46.1)

Mean (sd) 72.1 (9.5)

Median (min–max) 74.0 (37.0–95.0)

MDS diagnosis

RCMD 114 (44.5)

RARS 56 (21.9)

RA 45 (17.6)

RAEB-1 16 (6.3)

RCMD-RS 10 (3.9)

5q-syndrome 10 (3.9)

MDS-U 5 (2.0)

Group

NonRS-TI 143 (55.9)

NonRS-TD 47 (18.4)

RS-TI 48 (18.8)

RS-TD 18 (7.0)

IPSS-R category

Very low/low 195 (76.2)

Intermediate 23 (9.0)

High/very high 4 (1.6)

Not known 34 (13.3)

IPSS category

Low risk 144 (56.3)

Intermed-1 75 (29.3)

Intermed-2 1 (0.4)

Not known 36 (14.1)

Karnofsky performance status

Able to work and normal activity 193 (75.4)

Unable to work 48 (18.8)

Unable to care for self 1 (0.4)

Not known 14 (5.5)

Comorbidity index

Low risk 158 (61.7)

Intermediate risk 79 (30.9)

High risk 19 (7.4)

EQ5D index score

Mean (sd) 0.77 (0.24)

Median (p10–p90) 0.80 (0.52–1.00)
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collected. Table 1 describes the patient characteristics. Most
patients without ring sideroblasts were transfusion-
independent at diagnosis (nonRS-TI; 55.9%), 18.8% with
ring sideroblasts were transfusion-independent (RS-TI),
18.4% without ring sideroblasts were transfusion-dependent
(nonRS-TD), and 7% with ring sideroblasts were
transfusion-dependent patients (RS-TD). The median
follow-up time was 6.6 years (95% CI 5.9–7.0).

LPI was positively correlated with transferrin saturation
(TSAT) (r= 0.15, p < 0.001, Fig. S1). LPI values increased
exponentially at TSAT values above 80%. This effect was
most pronounced in the transfusion-dependent groups, but
also observed in the RS-TI group. MDA was weakly cor-
related with NTBI (r= 0.09, p= 0.069) and negatively
correlated with hemoglobin level (r=−0.1, p= 0.033).
GDF15 and hepcidin were negatively correlated in the RS-
TI and nonRS-TD group and significantly negatively cor-
related in the RS-TD group (r=−0.34, p= 0.007, Fig. S2).

Serum ferritin levels were elevated in all subgroups with
a mean value of 858 µg/L at visit 5. The highest serum
ferritin levels were observed in the RS-TD group (mean

value at visit 5: 2092 µg/L, Table S1). Serum ferritin
increased significantly per visit in the RS-TD group (beta
454.46 µg/L; 95% CI 334.65–574.27), but not in the other
groups (Table S2).

All subgroups, except for the nonRS-TI, had elevated
TSAT levels. TSAT levels were most markedly increased in
the RS-TD group with a mean TSAT of 88% at visit 5
(Table S1). In both transfusion-dependent groups the
median increase per visit was significant (Table S2).

LPI was elevated in the RS-TD group exclusively with a
mean value of 0.59 µmol/L at visit 5 (Table S1). NTBI was
elevated in all subgroups, with the highest values in the RS-
TD group (Table S1). The increase in median NTBI level
was significant in both transfusion-dependent groups
(Table S2).

Hepcidin levels were markedly elevated in the nonRS-
TD group. Interestingly, hepcidin levels were lower in the
RS-TD group, probably reflecting ineffective erythropoi-
esis, likewise supported by lower hepcidin/ferritin ratios in
RS groups (Table S1). Median hepcidin levels increased
over time in the transfusion-dependent subgroups only
(Table S2).

GDF15 levels, analyzed in the light of its potential role in
hepcidin suppression, were increased in all subgroups
(Table S1). The RS subgroups had higher GDF15 levels
compared to the nonRS groups, reflecting increased
erythropoiesis.

Mean sTfR levels were within the reference range in all
subgroups except for the RS-TI group, which showed ele-
vated levels, reflecting increased erythropoiesis (Table S1).

MDA levels were within the reference range in the
nonRS-TI group and above the upper limit of the reference
range in all other subgroups with the highest levels in the
RS-TD group (Table S1). MDA levels at diagnosis were
markedly higher in the RCMD-RS group compared to other
subtypes (Table S3.1). As expected, in the group with ele-
vated MDA levels, the transfusion density was markedly
higher as compared with patients with low MDA levels
(Table S3.2). Overall MDA levels increased over time (p <
0.0001). The steepest increase was observed in transfusion-
dependent patients, with the highest median levels over time
in the RS-TD group (Table S3.3).

Overall survival (OS)

Figure 1 shows a Kaplan–Meier curve for OS, stratified by
LPI above or below the lower limit of detection (LLOD)
and transfusion status as time-varying variables.
Transfusion-dependent patients with elevated LPI levels
have inferior OS compared to other subgroups. The Cox
model shows an adjusted hazard ratio (HR) for OS, cor-
rected for age at diagnosis and IPSS-R, of 2.7 (95% CI
1.5–5.0, p= 0.001) for LPI > LLOD. With the transfusion-

Table 1 (continued)

N (%)

ESA

No 159 (62.1)

Yes 97 (37.9)

Iron chelation

No 241 (94.1)

Yes 15 (5.9)

Desferoxamine 5 (2.0)

Deferiprone/deferasirox 11 (4.3)

Hypomethylating agents

No 245 (95.7)

Yes 11 (4.3)

Overall survival

Median (95% CI) 4.8 (3.9—not reached)

Cause of death

MDS unrelated 15 (34.1)

MDS related 24 (54.5)

Unknown 5 (11.4)

Follow-up time (censored last EUMDS visit)

Median (95% CI) 6.6 (5.9–7.0)

sd standard deviation, MDS myelodysplastic syndrome, RCMD
refractory cytopenia with multilineage dysplasia, RARS refractory
anemia with ring sideroblasts, RA refractory anemia, RAEB refractory
anemia with excess blasts, RCMD-RS refractory cytopenia with
multilineage dysplasia with ring sideroblasts, MDS-U myelodysplastic
syndrome unspecified, RS ring sideroblasts, TI transfusion-indepen-
dent, TD transfusion-dependent, IPSS(-R) (revised) international
prognostic scoring system, EQ5D EuroQoL five dimension scale,
ESA erythroid stimulating agents.

Toxic iron species in lower-risk myelodysplastic syndrome patients: course of disease and effects on. . . 1747



independent group with LPI values <LLOD as a reference,
the HR for OS in the transfusion-independent group with
LPI > LLOD was 4.5 (95% CI 1.4–13.9, p= 0.01), for the
transfusion-dependent group with LPI < LLOD: 3.9 (95%
CI 1.5–10.4, p= 0.006), and for the transfusion-dependent
group with LPI > LLOD: 6.7 (95% CI 2.5–17.6, p < 0.001,
Table S4).

The adjusted HR for OS for elevated NTBI was 1.6 (95%
CI 0.8–3.1, p= 0.17). Transfusion-independent patients
with normal NTBI levels have superior OS when compared
with the other subgroups, who have significantly increased
HRs for OS (Table S5).

Elevated TSAT (>80%) alone did not influence OS.
However, when we repeated the analysis in the whole
EUMDS registry as a dichotomous and continuous variable
(n= 1076, 2853 visits), elevated TSAT did influence OS
with an adjusted HR of 2.1 (95% CI 1.6–2.7, p < 0.001) and
1.009 (95% CI 1.004–1.014, p < 0.001), respectively.
Transfusion-dependent patients with a TSAT ≥ 80% had the
worst OS with an adjusted HR of 4.2 (95% CI 2.9–5.9, p <
0.001).

Progression-free survival

In line with the effect of LPI on OS progression-free sur-
vival is significantly inferior in transfusion-dependent
patients with LPI levels >LLOD (HR 9.2, 95% CI
3.8–22.5, p < 0.001).

Discussion

The results of this study suggest that LRMDS patients who
are transfusion-dependent and have a MDS subtype with

ring sideroblasts have the highest levels for markers that
reflect iron toxicity. Likewise, the highest hepcidin levels
were observed in the transfusion-dependent nonRS group,
but importantly, hepcidin levels and hepcidin/ferritin ratios
were markedly lower in the transfusion-dependent patients
with ring sideroblasts. Despite the excess of iron due to
RBCT, hepcidin levels were lower than expected, thereby
increasing the iron uptake from the gut and release of iron
from the reticulo-endothelial system. Transfusion depen-
dency is a known risk factor for iron toxicity. However,
ineffective erythropoiesis in RS subgroups evidently leads
to additional iron toxicity and potentially to increased
morbidity and mortality [13–15]. Therefore, transfusion-
dependent LRMDS patients with ring sideroblasts should be
closely monitored for signs of iron toxicity and treated
accordingly.

Our data suggest that LPI levels above the LLOD are
associated with inferior overall and progression-free survi-
val, irrespective of transfusion status. This highlights the
importance of rational RBCT strategies in LRMDS patients.
Novel hepcidin regulators as erythroferrone, hepcidin ago-
nists, and early start of iron chelation are subjects for future
research.

Overall MDA levels, as a marker of oxidative stress,
increased significantly over time in our patient group.
Oxidative stress due to iron toxicity could lead to organ
damage as well as mutagenesis and clonal instability con-
tributing to a higher progression risk [9–12]. Nevertheless,
MDA is not an exclusive marker for oxidative stress, future
research should focus on both oxidant and antioxidant
factors thereby unraveling the exact relation between iron
toxicity and oxidative stress.

In conclusion, iron toxicity is associated with inferior
survival in LRMDS patients. More restrictive RBCT stra-
tegies and pre-emptive iron reducing interventions may
prevent or reverse these unwanted effects.
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