15 research outputs found

    Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion

    Get PDF
    The mechanism of skeletal myoblast fusion is not well understood. We show that endogenous nitric oxide (NO) generation is required for myoblast fusion both in embryonic myoblasts and in satellite cells. The effect of NO is concentration and time dependent, being evident only at the onset of differentiation, and direct on the fusion process itself. The action of NO is mediated through a tightly regulated activation of guanylate cyclase and generation of cyclic guanosine monophosphate (cGMP), so much so that deregulation of cGMP signaling leads to a fusion-induced hypertrophy of satellite-derived myotubes and embryonic muscles, and to the acquisition of fusion competence by myogenic precursors in the presomitic mesoderm. NO and cGMP induce expression of follistatin, and this secreted protein mediates their action in myogenesis. These results establish a hitherto unappreciated role of NO and cGMP in regulating myoblast fusion and elucidate their mechanism of action, providing a direct link with follistatin, which is a key player in myogenesis

    Nitric Oxide Confers Therapeutic Activity to Dendritic Cells in a Mouse Model of Melanoma

    Get PDF
    Susceptibility of dendritic cells (DCs) to tumor-induced apoptosis reduces their efficacy in cancer therapy. Here we show that delivery within exponentially growing B16 melanomas of DCs treated ex vivo with nitric oxide (NO), released by the NO donor (z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO), significantly reduced tumor growth, with cure of 37% of animals. DETA-NO-treated DCs became resistant to tumor-induced apoptosis because DETA-NO prevented tumor-induced changes in the expression of Bcl-2, Bax, and Bcl-xL; activation of caspase-9; and a reduction in the mitochondrial membrane potential. DETA-NO also increased DC cytotoxic activity against tumor cells and DC ability to trigger T-lymphocyte proliferation. All of the effects of DETA-NO were mediated through cGMP generation. NO and NO-generating drugs may therefore be used to increase the anticancer efficacy of DCs

    Syndecans in skeletal muscle development, regeneration and homeostasis

    Get PDF
    Skeletal muscle is a highly dynamic tissue that can change in size in response to physiological demands and undergo successful regeneration even upon extensive injury. A population of resident stem cells, termed satellite cells, accounts for skeletal muscle plasticity, maintenance and regeneration. Mammalian satellite cells, generated from muscle precursor cells during development, are maintained quiescent in the musculature throughout a lifespan, but ready to activate, proliferate and differentiate into myocytes upon demand. Syndecans are transmembrane heparan sulfate proteoglycans expressed in muscle precursors during embryonic development and in satellite cells during postnatal life. In the last decades a number of crucial functions for syndecans in myogenesis and muscle disease have been described. Here we review the current knowledge of the multiple roles played by syndecans in the skeletal muscle of several animal models and explore future perspectives for human muscle health, with a focus on muscle aging and muscular dystroph

    The INSR/AKT/mTOR pathway regulates the pace of myogenesis in a syndecan-3-dependent manner

    No full text
    Muscle stem cells (MuSCs) are indispensable for muscle regeneration. A multitude of extracellular stimuli direct MuSC fate decisions from quiescent progenitors to differentiated myocytes. The activity of these signals is modulated by coreceptors such as syndecan-3 (SDC3). We investigated the global landscape of SDC3-mediated regulation of myogenesis using a phosphoproteomics approach which revealed, with the precision level of individual phosphosites, the large-scale extent of SDC3-mediated regulation of signal transduction in MuSCs. We then focused on INSR/AKT/mTOR as a key pathway regulated by SDC3 during myogenesis and mechanistically dissected SDC3-mediated inhibition of insulin receptor signaling in MuSCs. SDC3 interacts with INSR ultimately limiting signal transduction via AKT/mTOR. Both knockdown of INSR and inhibition of AKT restore Sdc3-/- MuSC differentiation to wild type levels. Since SDC3 is rapidly downregulated at the onset of differentiation, our study suggests that SDC3 acts a timekeeper to restrain proliferating MuSC response and prevent premature differentiation

    Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration

    Get PDF
    Background: The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Results: Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Conclusions: Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.Other UBCNon UBCReviewedFacult
    corecore