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Summary

Skeletal muscle is a highly dynamic tissue that can 
change in size in response to physiological demands 
and undergo successful  regeneration even upon exten-
sive injury. A population of resident stem cells, termed 
satellite cells, accounts for skeletal muscle plasticity, 
maintenance and regeneration. Mammalian satellite 
cells, generated from muscle precursor cells during 
development, are maintained quiescent in the muscu-
lature throughout a lifespan, but ready to activate, pro-
liferate and differentiate into myocytes upon demand. 
Syndecans are transmembrane heparan sulfate proteo-
glycans expressed in muscle precursors during embry-
onic development and in satellite cells during postnatal 
life. In the last decades a number of crucial functions 
for syndecans in myogenesis and muscle disease have 
been described. Here we review the current knowledge 
of the multiple roles played by syndecans in the skel-
etal muscle of several animal models and explore future 
perspectives for human muscle health, with a focus on 
muscle aging and muscular dystrophy.
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Introduction

Skeletal muscle fibers (myofibers) are large syncytial cells 

derived from the fusion of hundreds of progenitor cells during 
development (1). These muscle precursor cells (myoblasts) 
originate from the epaxial somite where, during mouse em-
bryonic development, undifferentiated progenitors delami-
nate from the somite and migrate into the limb bud. Initially 
these progenitors proliferate and then terminally differenti-
ate into myocytes prior to fusing with one another to form 
embryonic muscle fibers (2-5). A subset of these proliferat-
ing muscle progenitors are thought to be “set aside” during 
muscle development for the generation of satellite cells dur-
ing the late stages of embryonic development (6). 
Satellite cells, first described in frog muscle preparations (7), 
are the skeletal muscle stem cells (8,9) in all vertebrates, 
including humans (10). Satellite cells spend the vast ma-
jority of their lifespan mitotically quiescent, located within a 
specialized anatomic niche between the plasma membrane 
of the myofiber and the surrounding basal lamina (7). Each 
myofiber harbors 7-27 satellite cells, depending on the fiber 
type (11). In response to stimuli such as exercise or injury, 
satellite cells are activated, express the myogenic master 
gene MyoD and re-enter the cell cycle; activated and pro-
liferating MyoD+ satellite cells are termed myoblasts. After 
one or more rounds of proliferation, myoblasts exit the cell 
cycle and terminally differentiate into myocytes, which ex-
press muscle contractile proteins and fuse either one to 
another to form new myofibers or to pre-existing damaged 
myofibers to repair them (12). 
During embryonic development and in postnatal life, a fam-
ily of transmembrane heparan sulfate proteoglycans (HSP-
Gs) called syndecans have emerged as key regulators of 
skeletal muscle formation and maintenance. In this review 
we discuss the role played by syndecans in skeletal muscle 
development, maintenance and regeneration in healthy and 
diseased or aging organisms. We will then highlight future 
perspective for human muscle health that can be inferred 
based on studies carried out on animal models.

Syndecan structure

Syndecans are transmembrane HSPGs, complex mol-
ecules comprising a core protein that covalently links one 
or more long, linear carbohydrate chains, the glycosamino-
glycan (GAG) chains (13). Syndecans are conserved in all 
metazoans (14). The core protein structure is shared by all 
syndecans across large evolutionary distances, from the 
single syndecan expressed in invertebrates to the four dif-
ferent syndecans expressed in vertebrate organisms. How-
ever, the specific sequence can vary considerably across 
gene homologues and across species (14). 
The ectodomain is the most variable region of the syndecan 
core protein containing a N-terminal signal peptide and sev-
eral attachment sites for heparan sulfate chains. Addition-
ally, syndecan-1 and syndecan-3 also contain attachment 
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sites for chondroitin sulfate chains (15). The syndecan 
ectodomain also contains at least one proteolytic cleavage 
site close to the transmembrane domain that is recognized 
by metalloproteinases (16). Syndecan shedding has an im-
portant regulatory function since shed, soluble ectodomains 
can function as paracrine or autocrine effectors or com-
petitors (16). Moreover, ectodomain shedding is a way to 
quickly stop the processes that transmembrane syndecans 
take part in (16).
The transmembrane domain is a conserved single hydro-
phobic region, while the short intracellular domain contains 
three regions where a variable intermediate region (V) sep-
arates two highly conserved regions, C1 and C2, with C1 
being essentially identical in all syndecans (17).
Heparan sulfate (HS) contains a linear backbone com-
posed by repeating sequences of glucuronic acid and N-
acetyl-glucosamine disaccharide units. In HSPGs, each HS 
chain is attached through a xylose-galactose-galactose-
uronic acid tetrasaccharide linker to serine residues on the 
core protein (15). HS is synthesized in the Golgi where a 
complex set of enzymes catalyzes not only the addition of 
the linker and each alternating saccharide unit, but also sub-
sequent sugar modifications, which include C-5 epimeriza-
tion of glucuronic acid that yields iduronic acid, replacement 
of N-acetylation with N-sulfation at GlcNAc residues and 
three different O-sulfations: 2-O-sulfation, 3-O-sulfation and 
6-O-sulfation (13). HS contains a variable number of disac-
charide units (up to 200) with highly sulfated domains alter-
nating with less sulfated domains. It appears that specificity 
of heparan sulfate for its interactors is determined mainly 
within the highly sulfated domains. Moreover, it has been 
shown that one single HS chain can bind multiple interac-
tors simultaneously, thus yielding complex supramolecular 
structures such as in the case of FGF and FGF receptors 
(18). The highly variable number of repeating disaccharide 
units together with the large number and assortment of sac-
charide modifications yields an incredibly high number of 
possible “sequences” of functional units, which is why HS 
is considered the biomolecule with the highest degree of 
diversity (19).
Chondroitin sulfate (CS) chains have a backbone com-
posed by repeating glucuronic acid and N-acetyl-galac-
tosamine disaccharide units attached to the core protein 
through the same tetrasaccharide linker that connects HS 
to the core protein. As opposed to HS, CS chains contain 
a less diverse range of modifications and these are more 
equally distributed along the chain (13).

Syndecans in skeletal muscle development

Syndecan involvement in skeletal muscle development has 
been investigated in flies, turkeys and mice (20-23).
During Drosophila development, the single syndecan is 
expressed in muscle fibers and appears to be involved in 
motor-axon guidance by acting as a receptor for the neu-
ral receptor tyrosine phosphatase (RPTP) LAR (22). Thus, 
Drosophila syndecan controls muscle innervation during 
development and therefore regulates the onset of muscle 

functional maturation. Whether Drosophila syndecan is also 
involved directly in regulating embryonic myofiber forma-
tion, is unknown.
The role of syndecans in vertebrate muscle development 
has been studied in mice and birds (20,24). Developing 
mouse muscles express syndecan-1, syndecan-3 and 
syndecan-4 with similar topological distributions, but dif-
ferent temporal regulation (20,21). Northern and Western 
blot analyses of syndecan-1, syndecan-3 and syndecan-4 
mRNA and protein, respectively, show that syndecan-1 
protein peaks prior to other syndecans, around E12.5, then 
rapidly decreases and is completely absent by P2 (20). In 
contrast, syndecan-3 and syndecan-4 peak around E14.5 
and E13.5 respectively, but then decrease much more slow-
ly and are still expressed in newborn and adult mice (20,25). 
Expression of syndecan-1, syndecan-3 and syndecan-4 in 
embryonic muscle is localized to both myoblasts and myofi-
bers. While syndecan-1 is not detected in postnatal muscle, 
syndecan-3 and syndecan-4 proteins are restricted to satel-
lite cells and possibly vascular cells (21).
In embryonic turkey muscle, distribution of syndecan ex-
pression between E14 and E24 is regulated in a similar pat-
tern as in mice, peaking between E14 (syndecan-3), E16 
(syndecan-2) and E18 (syndecan-4), followed by a decline 
at later time points (E22-E24). Syndecan-2, 3 and 4 expres-
sion is presumably restricted to satellite cells in postnatal 
turkey muscle (23). 
Important roles for syndecans in muscle development were 
confirmed in turkey embryonic pectoralis major muscle at 
different developmental stages (E14 - E24) derived from ei-
ther a high body weight genetically selected line (F line) or 
a low body weight line (RBC2 line). In this study, Liu et al., 
found that the F line (high body weight) turkey muscle has 
higher levels of syndecan-2, syndecan-3 and syndecan-4 
than the RBC2 line (low body weight) turkey muscle, sup-
porting a key role for syndecans in the regulation of muscle 
development and size (23). 

Syndecans in skeletal muscle maintenance and 
regeneration

The hypothesis that HSPGs, such as syndecans, are in-
volved in myogenesis could have been already inferred 
when a key role for HS in growth factor signaling in myo-
blasts was described (26,27). Subsequent studies from 
Brandan and colleagues showed a role for specific HSPGs 
in myogenic differentiation using the C2C12 myoblast cell 
line (28-33). Shortly after this group showed that gene ex-
pression levels and protein levels of a number of HSPGs 
were regulated in vivo during injury-induced regeneration in 
mouse limb muscles (34). The only two syndecans identi-
fied by Casar et al. that appeared to be expressed in re-
generating muscle were syndecan-3 and syndecan-4 (34). 
Indeed, Cornelison et al. had previously shown that syn-
decan-3 and syndecan-4 are the only two syndecans de-
tectable by immunofluorescence in postnatal mouse skel-
etal muscle, co-localizing with markers of satellite cells (21). 
The time course of syndecan-3 and syndecan-4 expression 
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during muscle regeneration together with the observation 
that their expression was restricted to satellite cells, led to 
the hypothesis that these two syndecans played a role in 
satellite cell-mediated muscle regeneration and prompted 
further analyses of the muscle phenotypes of Sdc3-/- and 
Sdc4-/- mice (35). 
Though syndecan-3 and syndecan-4 are both expressed in 
quiescent satellite cells expression of these HSPGs in ac-
tivated, proliferating and differentiating satellite cells during 
injury-induced regeneration is distinct (Tab. 1) and  (34,36), 
in fact in 2004 Cornelison et al. described distinct roles for 
syndecan-3 and syndecan-4 in satellite cell-mediated mus-
cle regeneration (35). Sdc4-/- satellite cells show impaired 
activation, leading to impaired regeneration upon BaCl2-
induced injury (35). In contrast, Sdc3-/- satellite cells exhibit 
the opposite phenotype: impaired quiescence maintenance 
and renewal with a shift of the quiescent satellite cell pool 
toward a pool of transit-amplifying myoblasts (35,37).
A detailed inspection of the HSPG phenotype of quiescent 
and injury-activated satellite cells that our laboratory has 
recently performed, reveals that the most significant chang-
es occurring in activated satellite cells in vivo is a general 
down-regulation of HSPGs (Tab. 1) accompanied by a de-
cline in enzymes involved in GAG synthesis and modifica-
tion (Tab. 2). Only Syndecan-4 and two enzymes involved 

in HS sulfation are upregulated in response to injury (Tab. 1 
and 2). Thus, these observations suggest that the hepara-
nome of quiescent satellite cells may be responsible for co-
ordinating signals in the satellite cell niche that are respon-
sible for maintaining satellite cell quiescence. Interestingly, 
we recently showed that Sdc3-/- satellite cells fail to maintain 
quiescence and to renew (or re-acquire) a quiescent state 
following muscle injury (37). This observation, in addition to 
the observation that syndecan-3 is involved in the regulation 
of several signaling pathways (Pisconti et al., unpublished 
data) suggests that syndecan-3 may act as a master regula-
tor of the satellite cell signaling network that is associated 
with quiescence. In contrast, syndecan-4 may be the only 
satellite cell-specific HSPG involved in satellite cell activa-
tion and cell cycle entry.

Molecular mechanisms of syndecan function in skeletal 
muscle

Syndecans are complex molecules that have the potential 
to signal simultaneously through multiple pathways (38). 
Through both core protein and GAG chains each syn-
decan can interact with a large number of molecules, and 
the list of syndecan interactors is continuously increasing 

Table 1. Many proteoglycan transcripts are downregulated upon satellite cell activation. Wild type satellite cells were isolated from 
uninjured and injured tibialis anterior muscles at 12, 24 and 48 h following BaCl2-induced injury, total mRNA extracted and hybrid-
ized on Affymetrix gene chips to perform global gene expression analysis. The Table shows all proteoglycans that changed 2-fold or 
greater with a p-value < 0.01 between time points as indicated. Green = downregulated transcripts. Red = upregulated transcripts.

Table 2. Proteoglycan biosynthesis and modifying enzymes are regulated upon satellite cell activation. Wild type satellite cells were 
isolated from uninjured and injured tibialis anterior muscles at 12, 24 and 48 h following BaCl2-induced injury, total mRNA extracted 
and hybridized on Affymetrix gene chips to perform global gene expression analysis. The Table shows all enzymes that changed 
2-fold or greater with a p-value < 0.01 between time points as indicated. Green = downregulated transcripts. Yellow = transcripts vari-
ably regulated over time course. Red = upregulated transcripts.
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(38). Decoration of HSPG core proteins with GAG chains 
and subsequent saccharide modifications may be more cell 
type-specific than core protein-specific. In other words, the 
same core protein tends to receive different GAG chains 
when expressed in different cell types, or under different 
physiological states, with this depending mainly on the set 
of GAG biosynthetic enzymes expressed in each cell type 
(39,40). The opposite case, that different core proteins re-
ceive similar GAG chains when expressed in the same cell 
type has been proposed in the context of fibroblast adhe-
sion, where different membrane bound HSPGs bear GAG 
chains that are different in length but similar in sulfation 
pattern and capability to bind fibronectin (41). However, Tu-
mova et al. did observe subtle differences in HS structure 
present on different core proteins expressed in the same 
cell type and the fact that the only function tested by Tu-
mova et al., fibronectin binding, did not change significantly 
across the different core proteins examined, does not ex-
clude that other functions that were not tested (e.g. growth 
factor binding) could change accordingly with the difference 
in HS structure observed. In support of this hypothesis it 
has been shown that even small differences in HS structure 
can dramatically affect FGF binding (42) and function (43). 
Thus, the possibility that different core proteins receive dif-
ferent GAG chains with different biological functions when 
expressed in the same cell type is still open.
In postnatal mammalian skeletal muscle the only two syn-
decan proteins detected are syndecan-3 and syndecan-4 
(21), which are expressed in satellite cells and appear to 
control muscle homeostasis through distinct mechanisms 
(35,37). 
Syndecan-3 is the largest syndecan in mammals, harbor-
ing both HS and CS chains (17,44,45). In mouse satellite 
cells, syndecan-3 is found in a complex with Notch1 and 
promotes TACE-mediated cleavage of Notch, allowing for 
Notch signal transduction into satellite cells (37). In the ab-
sence of syndecan-3, Notch processing upon ligand binding 
is dramatically reduced as is generation of the Notch intra-
cellular domain and subsequent induction of Notch target 
genes (37). As a consequence of reduced Notch signaling, 
Sdc3-/- satellite cells proliferate more slowly than wild type 
cells and fail to maintain or to return to a quiescent state 
(37). The resulting phenotype is intriguing: Sdc3-/- injured 
muscles retain full regenerative capacity and undergo pro-
gressive myofiber size increase over time despite showing 
a dramatic loss of satellite cells (37). A possible hypothesis 
to explain this paradoxical phenotype has been proposed 
(37): loss of syndecan-3 impairs satellite cell capacity to 
enter a quiescent state without affecting their ability to dif-
ferentiate. Thus, a shift in the satellite cell population from 
a quiescent pool to an activated, proliferating and differen-
tiating pool over time leads to myofiber hypertrophy and 
depletion of the quiescent satellite cell pool (37). Although 
loss of quiescence but not differentiation can be explained 
by loss of Notch signaling, this cannot explain how Sdc3-/- 
myoblasts remain proliferative for a long time. It is possible 
that other signaling pathways regulated by syndecan-3 in 
satellite cells compensate for loss of Notch signaling to 
maintain Sdc3-/- myoblasts in a proliferative cycle. Indeed, 

syndecan-3 also regulates FGF and HGF signaling, though 
the molecular mechanisms involved are unknown (30,35). 
In Sdc3-/- satellite cells Notch signaling is decreased while 
FGF and HGF signaling are increased (35) and may ac-
count for the observed maintenance of a population of pro-
liferating myoblasts. Whether the core protein or the GAG 
chains of syndecan-3 are the main mediators of syndecan-3 
function in satellite cells and myoblasts is unknown, how-
ever both are required to rescue the Notch signaling pheno-
type in Sdc3-/- myoblasts (37).
Syndecan-4 is the smallest syndecan, but the best stud-
ied in myoblasts as well as in other systems (46). In mouse 
muscle, syndecan-4 plays a key role in mediating satellite 
cell activation in response to injury (35). Though the molec-
ular mechanisms underlying syndecan-4 function in mouse 
satellite cells are largely unknown, it has been hypothesized 
that syndecan-4 HS chains are involved in the regulation of 
FGF and HGF signaling in proliferating satellite cells (35). 
In the absence of syndecan-4, both FGF and HGF signal-
ing are impaired, but can be rescued by heparin treatment 
(35). However, a direct mechanistic analysis of syndecan-4 
function in mouse satellite cells is missing. In contrast, a sig-
nificant effort has been made to understand whether a func-
tional interaction between syndecan-4 and FGF2 exists in 
turkey satellite cells (47,48). This hypothesis is reasonable, 
since (a) syndecan-4 is involved in FGF2 signaling in other 
systems outside the musculature, (b) both FGF2 treatment 
and syndecan-4 ectopic expression in primary satellite cells 
lead to differentiation inhibition (47). However, genetic anal-
ysis revealed that in turkey satellite cells syndecan-4, with 
or without GAG chains, promotes proliferation and inhibits 
differentiation in an FGF2-independent manner (47-49). 
Syndecan-4 is also expressed in young myotubes prior to 
myofiber growth and final maturation (21). An intriguing 
recent finding shows that syndecan-4 protein, along with 
β1-integrin, localizes in costamers of cultured rat myotubes 
and is regulated by electrical activity (50). Denervation of 
rat tibialis anterior muscles or treatment of cultured myo-
tubes with tetrodotoxin induce syndecan-4 and β1-integrin 
downregulation and are associated with reduced myotube 
adhesion (50). 
Lastly, a role for syndecan-4 in myoblast migration has been 
hypothesized, however a detailed analysis is missing.
Heparan sulfate and chondroitin sulfate are the two types 
of GAG chains covalently attached to syndecan core pro-
teins (15). The role of HS and CS in muscle function and 
myogenesis has been studied irrespectively of which core 
proteins were attached to them (21,26,51-58). Understand-
ing how GAGs function and signal is complicated and fas-
cinating since: (1) the saccharide sequence of GAG chains 
is not template driven as is the amino acid sequence of 
proteins, but is the final result of multiple enzymes active 
simultaneously in a cell; (2) the signal mediated through 
GAG chains appears to be an “analog” signal where the 
entire pattern of saccharide and sulfated domains present 
at a given time in a given microdomain of the cell, can af-
fect multiple functions simultaneously, as opposed to the 
“digital” type of signal driven by canonical protein-protein 
interactions such as ligand-receptor, kinase-substrate, etc; 
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and, (3) despite its generally “analog” nature, GAG interac-
tors often exhibit high specificity for distinct oligosaccharide 
sequences. 
Both HS and CS are involved in muscle precursor prolif-
eration and differentiation, with highly sulfated HS generally 
promoting proliferation and CS generally promoting differ-
entiation (26,34,51,52,55,57,59,60), though exceptions to 
this general trend have been described (58,61). Unexpect-
edly, we have recently determined that satellite cell activa-
tion induces downregulation of several proteoglycans (PGs) 
and GAG biosynthesis enzymes, suggesting a key role for 
PGs present in the satellite cell niche in maintaining satellite 
cells in a quiescent state (Tab. 1 and Tab. 2).
Interesting results have recently arisen from the study of 
knockout mice lacking expression of one or more enzymes 
involved in GAG biosynthesis. For example the satellite cell 
phenotype observed in Sulf1-/-;Sulf2-/- double knockout mice 
appears the opposite of the phenotype observed in Sdc3-/- 
mice (37,57). Sulfs are extracellular enzymes that remove 
sulfate groups from HSPGs (heparan sulfate endosulfatas-
es) (62). Based on these results it is plausible to hypothe-
size that loss of one HSPG (such as syndecan-3) leads to a 
general rearrangement of the satellite cell glycocalyx result-
ing in an overall reduction in HS on the satellite cell surface. 
Vice-versa, loss of two extracellular sulfatases is expected 
to cause a general increase in sulfated HS on the satel-
lite cell surface, which may explain why the Sdc3-/- muscle 
satellite cell phenotype appears opposite when compared 
to the Sulf1-/-;Sulf2-/- phenotype (37,57). Moreover, loss of 
one HSPG may also indirectly affect the level of decoration 
and amount of sulfation of other HSPGs by disrupting the 
normal distribution of GAG biosynthesis enzymes across 
several core proteins and by altering the normal balance 
between positive and negative feedback loops in each bio-
synthetic pathway. 

Syndecans in aged and diseased skeletal muscle 

Muscular dystrophy is a family of genetic disorders char-
acterized by muscle weakness, chronic inflammation, fibro-
sis and eventually muscle loss (63). Although mutations in 
more than 20 different genes have been found that cause a 
clinical phenotype classified as muscular dystrophy, some 
histopathological features are shared by the vast majority 
of muscular dystrophies, including alterations to the satellite 
cell niche that are associated with exhaustion of satellite cell 
regenerative capacity (63). 
The level of HSPGs in muscles of dystrophic patients or 
animals is generally increased (33,54,64-68), suggesting 
a pathogenic role for HS and HSPGs in muscular dystro-
phy. In particular, syndecan-3 was augmented in Duchenne 
patients (33) and this finding, together with the finding that 
mdx satellite cells have increased levels of HS and CS and 
increased responsiveness to FGF (54), provided impetus to 
study the role of syndecan-3 in dystrophinopathies such as 
Duchenne muscular dystrophy (DMD). Indeed, our labora-
tory has recently observed a possible pathogenic role for 
syndecan-3 in a mouse model of DMD, although this work 

is still in progress as we write.
Aging of human subjects is often associated with frailty, 
sarcopenia and impaired muscle regeneration, represent-
ing a major public health problem in modern societies where 
the average lifespan has increased (69). As in muscular 
dystrophy, also in aging the prevailing hypothesis to explain 
loss of regenerative capacity is the exhaustion of satellite 
cell numbers or function, although the underlying cellular 
and molecular mechanisms are a matter of debate (70-75). 
If progressive impairment of satellite cell regenerative ca-
pacity is a major cause of age-related muscle weakness 
and loss, it is reasonable to hypothesize a key pathogenic 
role for the aging satellite cell niche, which is characterized 
by reduced vascularization and increased fibrosis and adi-
pogenesis (76,77). Several signaling pathways have been 
found altered in aging satellite cells in vivo (71,78,79). 
Moreover, it has been shown through parabiosis experi-
ments that a “young environment” can rescue age-related 
muscle regeneration defect in mice (72). Our laboratory has 
recently shown that when young satellite cells are trans-
planted into young hosts together with their native niche 
(the myofiber), the transplanted muscle retains full regen-
erative capacity as the recipient animal ages as opposed 
to its non-transplanted contralateral, which undergoes the 
normal process of age-related loss of muscle mass and 
function (80). This prevention of muscle aging observed 
in transplanted muscles is entirely supported by donor-de-
rived satellite cells, which remain viable in the host muscle 
throughout the mouse lifespan (80). When the donor cells 
(myofiber + associated satellite cells) where isolated from 
Sdc4-/- mice, this anti-aging effect was not observed, point-
ing out to syndecan-4 as a crucial component of the satellite 
cell niche (80).

Perspective for human health

Only in the last decade have the HSPG and muscle biol-
ogy communities begun to appreciate the importance of 
syndecans in skeletal muscle development and regenera-
tion and therefore it is not surprising that only a few studies 
in humans are yet available. However, studies in mice and 
other model organisms show promising results that will cer-
tainly inspire more human research. 
Of particular interest are the findings concerning muscle 
injury, muscular dystrophy and aging. While there is no in-
formation on the role of syndecans during muscle injury and 
aging in humans, it has been shown that expression levels 
of some proteoglycans, including syndecan-3, is augment-
ed in Duchenne muscular dystrophy patients  (33,64,67). 
This observation, in conjunction with our recent observa-
tions made in Sdc3-/- and dystrophic mice suggests that syn-
decans may be promising therapeutic targets. 
The satellite cell niche is altered in dystrophic muscles, pos-
sibly due to continuous myofiber damage and leakage, myo-
fiber necrosis and chronic inflammation, which in turn lead to 
extracellular matrix remodeling (81). In this context, target-
ing specific components of the niche, such as syndecans, 
may represent a potential therapeutic strategy for enhanc-
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ing muscle regeneration and slowing disease progression. 
Although a therapy that enhances muscle regeneration is 
not expected to be curative for muscular dystrophy, it is rea-
sonable to hypothesize that enhancing regeneration would 
greatly improve the lifestyle of dystrophic patients (82). Ad-
ditionally, therapies aimed at improving muscle regenera-
tion are also expected to increase the efficacy of stem cell 
and gene therapies, either by promoting exogenous stem 
cell contribution to host myofiber or by favoring contribution 
from transduced endogenous satellite cells.
Finally, a potential role for syndecans in human muscle 
health that has not been sufficiently explored is the use 
of syndecans as viral receptors for gene therapy. HS is 
involved in many viral infection processes acting as a re-
ceptor or co-receptor for viral particles (83). For example, 
infection of muscle fibers with herpes simplex virus type 
1 (HSV-1) is mediated by HS, although inhibited by other 
unidentified ECM components (84). This is a field that has 
the potential to yield interesting results in the future, as the 
unique expression of syndecan-3 and syndecan-4 is satel-
lite cells could be used, for example, to target viral vectors 
specifically to satellite cells.

In the last century the study of HSPGs in the musculoskel-
etal and other systems has produced a whole new level of 
understanding of cell adhesion, cell signaling and cell dif-
ferentiation and provided essential tools for the protection 
of human health. For example, heparin, a highly sulfated 
heparan sulfate, is one of the most widely used therapeutic 
agents worldwide. Future studies aimed at identifying roles 
for syndecans in human healthy and diseased muscle in 
conjunction with a detailed characterization of the signaling 
pathways and molecular networks controlled by syndecans, 
are expected to contribute significantly to our understanding 
of muscle biology and our ability to treat muscle disorders.
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