80 research outputs found

    Photophoretic Strength on Chondrules. 2. Experiment

    Full text link
    Photophoretic motion can transport illuminated particles in protoplanetary disks. In a previous paper we focused on the modeling of steady state photophoretic forces based on the compositions derived from tomography and heat transfer. Here, we present microgravity experiments which deviate significantly from the steady state calculations of the first paper. The experiments on average show a significantly smaller force than predicted with a large variation in absolute photophoretic force and in the direction of motion with respect to the illumination. Time-dependent modeling of photophoretic forces for heat-up and rotation show that the variations in strength and direction observed can be well explained by the particle reorientation in the limited experiment time of a drop tower experiment. In protoplanetary disks, random rotation subsides due to gas friction on short timescales and the results of our earlier paper hold. Rotation has a significant influence in short duration laboratory studies. Observing particle motion and rotation under the influence of photophoresis can be considered as a basic laboratory analog experiment to Yarkovsky and YORP effects

    Thermal history of Northwest Africa 5073--A coarse-grained Stannern-trend eucrite containing cm-sized pyroxenes and large zircon grains

    No full text
    International audienceWe report on the bulk chemical composition, petrology, oxygen isotopic composition, trace element composition of silicates, and degree of self-irradiation damage on zircon grains of the eucrite Northwest Africa (NWA) 5073 to constrain its formation and postcrystallization thermal history, and to discuss their implications for the geologic history of its parent body. This unequilibrated and unbrecciated meteorite is a new member of the rare Stannern-trend eucrites. It is mainly composed of elongated, zoned pyroxene phenocrysts up to 1.2 cm, plagioclase laths up to 0.3 cm in length, and is rich in mesostasis. The latter contains zircon grains up to 30 Όm in diameter, metal, sulfide, tridymite, and Ca-phosphates. Textural observations and silicate compositions, coupled with the occurrence of extraordinary Fe-rich olivine veins that are restricted to large pyroxene laths, indicate that NWA 5073 underwent a complex thermal history. This is also supported by the annealed state of zircon grains inferred from Ό-Raman spectroscopic measurements along with U and Th data obtained by electron probe microanalyses

    The Ksar Ghilane 002 shergottite-The 100th registered Martian meteorite fragment

    Get PDF
    We report on the discovery of a new shergottite from Tunisia, Ksar Ghilane (KG) 002. This single stone, weighing 538 g, is a coarse-grained basaltic shergottite, mainly composed of maskelynitized plagioclase (approximately 52 vol%) and pyroxene (approximately 37 vol%). It also contains Fe-rich olivine (approximately 4.5 vol%), large Ca-phosphates, including both merrillites and Cl-apatites (approximately 3.4 vol%), minor amounts of silica or SiO_2-normative K-rich glass, pyrrhotite, Ti-magnetite, ilmenite, and accessory baddeleyite. The largest crystals of pyroxene and plagioclase reach sizes of approximately 4 to 5 mm. Pyroxenes (Fs_(26–96)En_(5–50)Wo_(2–41)). They typically range from cores of about Fs_(29)En_(41)Wo_(30) to rims of about Fs_(68)En_(14)Wo_(17). Maskelynite is Ab_(41–49)An_(39–58)Or_(1–7) in composition, but some can be as anorthitic as An_(93). Olivine (Fa_(91–96)) occurs mainly within symplectitic intergrowths, in paragenesis with ilmenite, or at neighboring areas of symplectites. KG 002 is heavily shocked (S5) as indicated by mosaic extinction of pyroxenes, maskelynitized plagioclase, the occurrence of localized shock melt glass pockets, and low radiogenic He concentration. Oxygen isotopes confirm that it is a normal member of the SNC suite. KG 002 is slightly depleted in LREE and shows a positive Eu anomaly, providing evidence for complex magma genesis and mantle processes on Mars. Noble gases with a composition thought to be characteristic for Martian interior is a dominant component. Measurements of ^(10)Be, ^(26)Al, and ^(53)Mn and comparison with Monte Carlo calculations of production rates indicate that KG 002 has been exposed to cosmic rays most likely as a single meteoroid body of 35–65 cm radius. KG 002 strongly resembles Los Angeles and NWA 2800 basaltic shergottites in element composition, petrography, and mineral chemistry, suggesting a possible launch-pairing. The similar CRE ages of KG 002 and Los Angeles may suggest an ejection event at approximately 3.0 Ma

    The polymict carbonaceous breccia aguas zarcas: A potential analog to samples being returned by the OSIRIS‐REx and hayabusa2 missions

    Get PDF
    Abstract On April 23, 2019, a meteorite fall occurred in Aguas Zarcas, Costa Rica. According to the Meteoritical Bulletin, Aguas Zarcas is a brecciated CM2 chondrite dominated by two lithologies. Our X‐ray computed tomography (XCT) results show many different lithologies. In this paper, we describe the petrographic and mineralogical investigation of five different lithologies of the Aguas Zarcas meteorite. The bulk oxygen isotope compositions of some lithologies were also measured. The Aguas Zarcas meteorite is a breccia at all scales. From two small fragments, we have noted five main lithologies, including (1) Met‐1: a metal‐rich lithology; (2) Met‐2: a second metal‐rich lithology which is distinct from Met‐1; (3) a brecciated CM lithology with clasts of different petrologic subtypes; (4) a C1/2 lithology; and (5) a C1 lithology. The Met‐1 lithology is a new and unique carbonaceous chondrite which bears similarities to CR and CM chondrite groups, but is distinct from both based on oxygen isotope data. Met‐2 also represents a new type of carbonaceous chondrite, but it is more similar to the CM chondrite group, albeit with a very high abundance of metal. We have noted some similarities between the Met‐1 and Met‐2 lithologies and will explore possible genetic relationships. We have also identified a brecciated CM lithology with two primary components: a chondrule‐poor lithology and a chondrule‐rich lithology showing different petrologic subtypes. The other two lithologies, C1 and C1/2, are very altered and possibly related to the CM chondrite group. In this article, we describe all the lithologies in detail and attempt a classification of each in order to understand the origin and the history of formation of the Aguas Zarcas parent body

    Asteroid 2008 TC3, not a polymict ureilitic but a polymict C1 chondrite parent body? Survey of 249 Almahata Sitta fragments

    Get PDF
    On October 7, 2008, the asteroid 2008 TC3 exploded as it entered the Earth’s atmosphere, producing significant dust (in the atmosphere) and delivering thousands of stones in a strewn field in Sudan, collectively known as the Almahata Sitta (AhS) stones. About 600 fragments were officially recovered in 2008 and 2009. Further rocks were collected since the fall event by local people. From these stones, 249 were classified at the Institut fĂŒr Planetologie in MĂŒnster (MS) known as MS‐xxx or MS‐MU‐xxx AhS subsamples. Most of these rocks are ureilitic in origin (168; 67%): 87 coarse‐grained ureilites, 60 fine‐grained ureilites, 15 ureilites with variable texture/mineralogy, four trachyandesites, and two polymict breccias. We identified 81 non‐ureilitic fragments, corresponding to 33% of the recovered samples studied in MĂŒnster. These included chondrites, namely 65 enstatite chondrites (43 EL; 22 EH), 11 ordinary chondrites (OC), one carbonaceous chondrite, and one unique R‐like chondrite. Furthermore, three samples represent a unique type of enstatite achondrite. Since all AhS stones must be regarded as individual specimens independent from each other, the number of fresh ureilite and enstatite chondrite falls in our meteorite collections has been increased by several hundred percent. Overall, the samples weigh between <1 and 250 g and have a mean mass of ~15 g. If we consider—almost 15 years after the fall—the mass calculations, observations during and after the asteroid entered the atmosphere, the mineralogy of the C1 stones AhS 91A and AhS 671, and the experimental work on fitting the asteroid spectrum (e.g., Goodrich et al., 2019; Jenniskens et al., 2010; Shaddad et al., 2010), the main portion of the meteoroid was likely made of the fine‐grained (carbonaceous) dust and was mostly lost in the atmosphere. In particular, the fact that C1 materials were found has important implications for interpreting asteroid 2008 TC3's early spectroscopic results. Goodrich et al. (2019) correctly suggested that if scientists had not recovered the “water‐free” samples (e.g., ureilites, enstatites, and OC) from the AhS strewn field, 2008 TC3 would have been assumed to be a carbonaceous chondrite meteoroid. Considering that the dominating mass of the exploding meteoroid consisted of carbonaceous materials, asteroid 2008 TC3 cannot be classified as a polymict ureilite; consequently, we state that the asteroid was a polymict carbonaceous chondrite breccia, specifically a polymict C1 object that may have formed by late accretion at least 50–100 Ma after calcium–aluminum‐rich inclusions

    A primordial 15N-depleted organic component detected within the carbonaceous chondrite Maribo

    Get PDF
    We report on the detection of primordial organic matter within the carbonaceous chondrite Maribo that is distinct from the majority of organics found in extraterrestrial samples. We have applied high-spatial resolution techniques to obtain C-N isotopic compositions, chemical, and structural information of this material. The organic matter is depleted in 15N relative to the terrestrial value at around ÎŽ15N ~ -200‰, close to compositions in the local interstellar medium. Morphological investigations by electron microscopy revealed that the material consists of ”m- to sub-”m-sized diffuse particles dispersed within the meteorite matrix. Electron energy loss and synchrotron X-ray absorption near-edge structure spectroscopies show that the carbon functional chemistry is dominated by aromatic and C=O bonding environments similar to primordial organics from other carbonaceous chondrites. The nitrogen functional chemistry is characterized by C-N double and triple bonding environments distinct from what is usually found in 15N-enriched organics from aqueously altered carbonaceous chondrites. Our investigations demonstrate that Maribo represents one of the least altered CM chondrite breccias found to date and contains primordial organic matter, probably originating in the interstellar medium

    Experiments on the Photophoretic Motion of Chondrules and Dust Aggregates - Indications for the Transport of Matter in Protoplanetary Disks

    Full text link
    In a set of 16 drop tower experiments the motion of sub-mm to mm-sized particles under microgravity was observed. Illumination by a halogen lamp induced acceleration of the particles due to photophoresis. Photophoresis on dust-free chondrules, on chondrules, glass spheres and metal spheres covered with SiC dust and on pure SiC dust aggregates was studied. This is the first time that photophoretic motion of mm-sized particles has been studied experimentally. The absolute values for the photophoretic force are consistent with theoretical expectations for spherical particles. The strength of the photophoretic force varies for chondrules, dust covered particles and pure dust from low to strong, respectively. The measurements support the idea that photophoresis in the early Solar System can be efficient to transport solid particles outward

    The old, unique C1 chondrite Flensburg - Insight into the first processes of aqueous alteration, brecciation, and the diversity of water-bearing parent bodies and lithologies

    Get PDF
    On September 12, 2019 at 12:49:48 (UT) a bolide was observed by hundreds of eye-witnesses from the Netherlands, Germany, Belgium, Denmark and the UK. One day later a small meteorite stone was found by accident in Flensburg. The presence of short-lived cosmogenic radionuclides with half-lives as short as 16 days proves the recent exposure of the found object to cosmic rays in space linking it clearly to the bolide event. An exceptionally short exposure time of ~5000 years was determined. The 24.5 g stone has a fresh black fusion crust, a low density of <2 g/cm^3, and a magnetic susceptibility of logX = 4.35 (X in 10^-9 m^3/kg). The rock consists of relict chondrules and clusters of sulfide and magnetite grains set in a fine-grained matrix. The most abundant phases are phyllosilicates. Carbonates (~3.9 vol.%) occur as calcites, dolomites, and a Na-rich phase. The relict chondrules (often surrounded by sulfide laths) are free of anhydrous silicates and contain abundant serpentine. Lithic clasts are also surrounded by similar sulfide laths partly intergrown with carbonates. 53^Mn-^53Cr ages of carbonates in Flensburg indicate that brecciation and contemporaneous formation of the pyrrhotite-carbonate intergrowths by hydrothermal activities occurred no later than 4564.6 +- 1.0 Ma (using the angrite D'Orbigny as the Mn-Cr age anchor). This corresponds to 2.6 +- 1.0 or 3.4 +- 1.0 Ma after formation of CAIs, depending on the exact absolute age of CAIs. This is the oldest dated evidence for brecciation and carbonate formation, which likely occurred during parent body growth and incipient heating due to decay of 26Al. In the three oxygen isotope diagram, Flensburg plots at the 16O-rich end of the CM chondrite field and in the transition field to CV-CK-CR chondrites. The mass-dependent Te isotopic composition of Flensburg is slightly different from mean CM chondrites and is most similar to those of the ungrouped C2 chondrite Tagish Lake. On the other hand, 50Ti and 54Cr isotope anomalies indicate that Flensburg is similar to CM chondrites, as do the ~10 wt.% H2O of the bulk material. Yet, the bulk Zn, Cu, and Pb concentrations are about 30% lower than those of mean CM chondrites. The He, Ne, and Ar isotopes of Flensburg show no solar wind contribution; its trapped noble gas signature is similar to that of CMs with a slightly lower concentration of 20Netr. Based on the bulk H, C, and N elemental abundances and isotopic compositions, Flensburg is unique among chondrites, because it has the lightest bulk H and N isotopic compositions of any type 1 or 2 chondrite investigated so far. Moreover, the number of soluble organic compounds in Flensburg is even lower than that of the brecciated CI chondrite Orgueil. The extraordinary significance of Flensburg is evident from the observation that it represents the oldest chondrite sample in which the contemporaneous episodes of aqueous alteration and brecciation have been preserved. The characterization of a large variety of carbonaceous chondrites with different alteration histories is important for interpreting returned samples from the OSIRIS-REx and Hayabusa 2 missions.This work is partly funded by the Deutsche Forschungs- gemeinschaft (DFG, German Research Foundation) – Project-ID 263649064 – TRR 170 (A.B., C.B., T.K.); this is TRR170 Publication No. 119. M.S. and C.M. thank the Swiss National Science Foundation (SNF) for support. The work of H.B. and M.S. has been in parts carried out within the framework of the NCCR PlanetS supported by SNF. D.H. thanks F. Langenhorst for support and access to the FIB-SEM and TEM facilities at FSU-IGW, which are funded by the DFG via grant LA830/14-1. D.F. (CIW) acknowledges the support of the NASA awards 80NSSC19K0559 and 80NSSC20K0344

    The Stubenberg meteorite—An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field

    Get PDF
    On March 6, 2016 at 21:36:51 UT, extended areas of Upper Austria, Bavaria (Germany) and the southwestern part of the Czech Republic were illuminated by a very bright bolide. This bolide was recorded by instruments in the Czech part of the European Fireball Network and it enabled complex and precise description of this event including prediction of the impact area. So far six meteorites totaling 1473 g have been found in the predicted area. The first pieces were recovered on March 12, 2016 on a field close to the village of Stubenberg (Bavaria). Stubenberg is a weakly shocked (S3) fragmental breccia consisting of abundant highly recrystallized rock fragments embedded in a clastic matrix. The texture, the large grain size of plagioclase, and the homogeneous compositions of olivine (Fa31.4) and pyroxene (Fs25.4) clearly indicate that Stubenberg is an LL6 chondrite breccia. This is consistent with the data on O, Ti, and Cr isotopes. Stubenberg does not contain solar wind-implanted noble gases. Data on the bulk chemistry, IR spectroscopy, cosmogenic nuclides, and organic components also indicate similarities to other metamorphosed LL chondrites. Noble gas studies reveal that the meteorite has a cosmic ray exposure (CRE) age of 36 ± 3 Ma and that most of the cosmogenic gases were produced in a meteoroid with a radius of at least 35 cm. This is larger than the size of the meteoroid which entered the Earth's atmosphere, which is constrained to <20 cm from short-lived radionuclide data. In combination, this might suggest a complex exposure history for Stubenberg.PostprintPeer reviewe
    • 

    corecore