104 research outputs found

    A Debiasing Variational Autoencoder for Deforestation Mapping

    Get PDF
    Deep Learning (DL) algorithms provide numerous benefits in different applications, and they usually yield successful results in scenarios with enough labeled training data and similar class proportions. However, the labeling procedure is a cost and time-consuming task. Furthermore, numerous real-world classification problems present a high level of class imbalance, as the number of samples from the classes of interest differ significantly. In various cases, such conditions tend to promote the creation of biased systems, which negatively impact their performance. Designing unbiased systems has been an active research topic, and recently some DL-based techniques have demonstrated encouraging results in that regard. In this work, we introduce an extension of the Debiasing Variational Autoencoder (DB-VAE) for semantic segmentation. The approach is based on an end-to-end DL scheme and employs the learned latent variables to adjust the individual sampling probabilities of data points during the training process. For that purpose, we adapted the original DB-VAE architecture for dense labeling in the context of deforestation mapping. Experiments were carried out on a region of the Brazilian Amazon, using Sentinel-2 data and the deforestation map from the PRODES project. The reported results show that the proposed DB-VAE approach is able to learn and identify under-represented samples, and select them more frequently in the training batches, consequently delivering superior classification metrics

    RNA-Seq and metabolic flux analysis of Tetraselmis sp. M8 during nitrogen starvation reveals a two-stage lipid accumulation mechanism

    Get PDF
    To map out key lipid-related pathways that lead to rapid triacylglyceride accumulation in oleaginous microalgae, RNA-Seq was performed with Tetraselmis sp. M8 at 24 h after exhaustion of exogenous nitrogen to reveal molecular changes during early stationary phase. Further gene expression profiling by quantitative real-time PCR at 16–72 h revealed a distinct shift in expression of the fatty acid/triacylglyceride biosynthesis and β-oxidation pathways, when cells transitioned from log-phase into early-stationary and stationary phase. Metabolic reconstruction modeling combined with real-time PCR and RNA-Seq gene expression data indicates that the increased lipid accumulation is a result of a decrease in lipid catabolism during the early-stationary phase combined with increased metabolic fluxes in lipid biosynthesis during the stationary phase. During these two stages, Tetraselmis shifts from reduced lipid consumption to active lipid production. This process appears to be independent from DGAT expression, a key gene for lipid accumulation in microalgae

    Isolation of a euryhaline microalgal strain, Tetraselmis sp CTP4, as a robust feedstock for biodiesel production

    Get PDF
    Bioprospecting for novel microalgal strains is key to improving the feasibility of microalgae-derived biodiesel production. Tetraselmis sp. CTP4 (Chlorophyta, Chlorodendrophyceae) was isolated using fluorescence activated cell sorting (FACS) in order to screen novel lipid-rich microalgae. CTP4 is a robust, euryhaline strain able to grow in seawater growth medium as well as in non-sterile urban wastewater. Because of its large cell size (9-22 mu m), CTP4 settles down after a six-hour sedimentation step. This leads to a medium removal efficiency of 80%, allowing a significant decrease of biomass dewatering costs. Using a two-stage system, a 3-fold increase in lipid content (up to 33% of DW) and a 2-fold enhancement in lipid productivity (up to 52.1 mg L-1 d(-1)) were observed upon exposure to nutrient depletion for 7 days. The biodiesel synthesized from the lipids of CTP4 contained high levels of oleic acid (25.67% of total fatty acids content) and minor amounts of polyunsaturated fatty acids with >= 4 double bonds (< 1%). As a result, this biofuel complies with most of the European (EN14214) and American (ASTM D6751) specifications, which commonly used microalgal feedstocks are usually unable to meet. In conclusion, Tetraselmis sp. CTP4 displays promising features as feedstock with lower downstream processing costs for biomass dewatering and biodiesel refining

    Evaluación de cuatro antimicrobianos para el control de levaduras contaminantes de un proceso de fermentación de ácido cítrico

    Get PDF
    Con el fin de sustituir el uso del metabisulfito de sodio en el proceso de fermentación de ácido cítrico para controlar el crecimiento de levaduras contaminantes en una empresa productora de ácido cítrico del Valle de Cauca. Se realizó el aislamiento y a identificación de las dos cepas contaminantes del proceso mediante el método de Microscan.Microbiólogo (a) IndustrialPregrad

    Towards sustainable sources for omega-3 fatty acids production

    No full text
    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA), provide significant health benefits for brain function/development and cardiovascular conditions. However, most EPA and DHA for human consumption is sourced from small fatty fish caught in coastal waters and, with depleting global fish stocks, recent research has been directed towards more sustainable sources. These include aquaculture with plant-based feeds, krill, marine microalgae, microalgae-like protists and genetically-modified plants. To meet the increasing demand for EPA and DHA, further developments are needed towards land-based sources. In particular large-scale cultivation of microalgae and plants is likely to become a reality with expected reductions in production costs, yield increasese and the adequate addressing of genetically modified food acceptance issues

    Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp.

    No full text
    With the depletion of global fish stocks, caused by high demand and effective fishing techniques, alternative sources for long chain omega-3 fatty acids are required for human nutrition and aquaculture feeds. Recent research has focused on land-based cultivation of microalgae, the primary producers of omega-3 fatty acids in the marine food web. The effect of salinity on fatty acids and related gene expression was studied in the model marine microalga, Tetraselmis sp. M8. Correlations were found for specific fatty acid biosynthesis and gene expression according to salinity and the growth phase. Low salinity was found to increase the conversion of C18:4 stearidonic acid (SDA) to C20:4 eicosatetraenoic acid (ETA), correlating with increased transcript abundance of the Delta-6-elongase-encoding gene in salinities of 5 and 10 ppt compared to higher salinity levels. The expression of the gene encoding beta-ketoacyl-coenzyme was also found to increase at lower salinities during the nutrient deprivation phase (Day 4), but decreased with further nutrient stress. Nutrient deprivation also triggered fatty acids synthesis at all salinities, and C20:5 eicosapentaenoic acid (EPA) increased relative to total fatty acids, with nutrient starvation achieving a maximum of 7% EPA at Day 6 at a salinity of 40 ppt

    Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production

    Get PDF
    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae

    Microalgae, old sustainable food and fashion nutraceuticals

    Get PDF
    8 p.-1 fig.Research on microalgae at the laboratory of J. L. García is supported by grants from the Community of Madrid and the Structural Funds from European Union (Ref: S2013/ABI2783 (INSPIRA1-CM)), the Spanish Ministry of Economy (RTC-2016- 4860-2), the Intramural Program of CSIC (201420E086) and the H2020 FET-OPEN program (LIAR Project ID: 686585).Peer reviewe
    • …
    corecore