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ABSTRACT:

Deep Learning (DL) algorithms provide numerous benefits in different applications, and they usually yield successful results
in scenarios with enough labeled training data and similar class proportions. However, the labeling procedure is a cost and
time-consuming task. Furthermore, numerous real-world classification problems present a high level of class imbalance, as the
number of samples from the classes of interest differ significantly. In various cases, such conditions tend to promote the creation
of biased systems, which negatively impact their performance. Designing unbiased systems has been an active research topic, and
recently some DL-based techniques have demonstrated encouraging results in that regard. In this work, we introduce an extension of
the Debiasing Variational Autoencoder (DB-VAE) for semantic segmentation. The approach is based on an end-to-end DL scheme
and employs the learned latent variables to adjust the individual sampling probabilities of data points during the training process. For
that purpose, we adapted the original DB-VAE architecture for dense labeling in the context of deforestation mapping. Experiments
were carried out on a region of the Brazilian Amazon, using Sentinel-2 data and the deforestation map from the PRODES project.
The reported results show that the proposed DB-VAE approach is able to learn and identify under-represented samples, and select
them more frequently in the training batches, consequently delivering superior classification metrics.

1. INTRODUCTION

The popularity of Deep Learning (DL) techniques has increased
enormously (Wang et al., 2020) in recent years. Indeed,
DL-based approaches are associated with exceptional advances
across a wide range of applications, in a diverse variety of
fields, such as medical image analysis and diagnosis, biometry,
environmental monitoring, autonomous driving, and natural
language processing among others. These systems need to be
carefully conceived and properly developed, ideally taking into
consideration the concept of fairness (Osoba, Welser IV, 2017),
as the solutions have a direct impact on society. In that context,
providing safe and fair systems has become a relevant topic in
a research community concerned with guaranteeing long-term,
successful implementation of such systems, while minimizing
potential negative side effects of their continuous use (Mehrabi
et al., 2021, Amini et al., 2019).

Conventionally, DL approaches achieve good performances
in scenarios with enough labeled training data (Vardi, 2022).
In that case, they are able to generalize successfully on the
unobserved test data. Nevertheless, the lack of large sets of
labeled data is inherent to many real-world problems, and such
a condition can lead to the creation of biased systems.

In addition, the class imbalance problem is quite common
in different DL applications (Thabtah et al., 2020). In such
cases, the trained classifier may be biased towards the majority
classes, and it is possible to reach a high overall accuracy by just
assigning those classes to the test samples (Ali et al., 2019). For
the minority classes, however, the classification performance
may be very poor. We observe that such issue is particularly
∗ Corresponding author

significant in change detection, as usually the instances of the
changed class are much scarcer than those of the unchanged
samples. The capacity to properly learn from imbalanced data
is, therefore, of paramount importance for change detection
applications.

To address the fairness and the bias issues, several
methods have been proposed thus far. Typically, those
methods are categorized based on the stage where the bias
mitigation is performed. Three different categories have been
considered (Friedler et al., 2019): pre-process, in-process; and
post-process.

Pre-process algorithms involve the transformation of the
training data before feeding them into the model. For instance,
the authors of (Naseriparsa et al., 2020, More, 2016) proposed
resampling techniques to generate synthetic samples of the
minority class. Those methods, however, do not properly
consider within-class variability, and can also oversample
uninformative or noisy samples (Jiang et al., 2021). The
authors of (Kamiran, Calders, 2012, Luong et al., 2011)
propose reweighing or changing the labels of some samples
to train a classifier with non-discrimination constraints. The
target samples in those works are those closest to the decision
boundary, which are usually critical in the classification
prediction. Similarly, works for learning the latent structure
of data have also been studied, e.g., (Feldman et al., 2015,
Calmon et al., 2017, Louizos et al., 2015). Those include
latent SVM (Felzenszwalb et al., 2008) and fair dimensionality
reduction with Principal Component Analysis (PCA) (Samadi
et al., 2018). More recently, DL-based approaches for
generating fair representations have been proposed. In that
group, Variational Autoencoders (VAE) (Kingma, Welling,
2013, Louizos et al., 2015, Liu et al., 2022) and adversarial
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training-based methods (Edwards, Storkey, 2015, Xie et al.,
2017, Madras et al., 2018, Feng et al., 2019, Ruoss et al., 2020)
are commonly used.

For in-process mechanisms, fairness is addressed during the
training stage. The authors of (Kamishima et al., 2012)
included a regularization term representing a trade-off between
classification accuracy and fairness in the loss function.
Likewise, (Bechavod, Ligett, 2017) included terms into the loss
function that penalize unfairness by minimizing the differences
between the false positive and false negative rates.

Finally, the post-process mechanisms make decision fairer by
further processing the output scores of the classifiers. As
an example, (Hardt et al., 2016) ensures a non-discriminatory
prediction by flipping some decisions of a classifier to equalize
predictor odds. Additionally, a decoupling system is proposed
in (Corbett-Davies et al., 2017) to train independent classifiers
for each class, and combine transfer learning approaches to
learn from samples out of all classes.

In this work, we adapted the Debiasing Variational Autoencoder
(DB-VAE), proposed by (Amini et al., 2019), for the task of
semantic segmentation. Our approach is based on an end-to-end
training scheme and employs the learned latent variables to
adjust the individual sampling probabilities of data points
during the training process. Thus, the method is able to identify
types of samples that are under-represented in the training set,
and to increase the likelihood that such instances are sampled
during training. For semantic segmentation, we added an
extra enconder-decoder module to the original architecture,
composed of a series of convolutional operations followed by
a softmax layer, which infers the probability of each class in a
dense labeling fashion. We evaluated the proposed method on a
deforestation detection application, using Sentinel-2 data from
a region in the Amazon rain forest.

This paper is organized as follows: Section 2 describes the
fully convolutional DB-VAE method used for deforestation
detecting. Next, Section 3 presents the study area, the detailed
experimental protocol, and the analysis of the obtained results.
Finally, conclusions and final remarks are presented in Section
4.

2. FULLY DB-VAE

This section presents a brief description of the DB-VAE,
originally proposed in (Amini et al., 2019), as well as the
adaptation of the method to the semantic segmentation task.

Formally, let’s consider a classification problem with d classes,
and n training samples D = {(xi,yi)}ni=1, where xi indicates
the features (x ∈ Rm), and yi denotes the class label (y ∈
Rd) of the i-th sample. The goal is to find a nonlinear
mapping fθ : X → Y parameterized by θ which minimizes
a certain loss L over the entire training dataset. Then, given a
new unobserved sample (xi,yi), the classifier should ideally
output ŷi = fθ(xi), where ŷi is ”proximate” to yi, where
the proximity is defined by the loss function. In addition,
let’s assume that each sample has an associated latent-space
representation of dimension k (zi ∈ Rk and k < m), which
compresses the feature information of the original input.

Inspired by (Amini et al., 2019), we propose a fully
convolutional architecture for semantic segmentation. In

particular, we focus on a change detection application, i.e.,
deforestation detection. Accordingly, the input of the neural
network comprises a co-registered pair of images acquired at
different dates: It0 and It1 . The images were concatenated
along their spectral dimension, resulting in a tensor I ∈
RH×W×C , where H and W refer to the spatial dimensions,
and C to the number of image channels (two times those of
each individual image).

Figure 1 shows the general design of the Fully DB-VAE. The
encoder module of the VAE compresses the input samples
and learns an approximation qϕ, (z|x), parametrized by ϕ of
the true distribution of the latent variables given a data point
x. The decoder reconstructs the input using the latent space
representation by approximating pψ(x̂|z), parametrized by ψ.
VAEs parameterize the outputs as a normal distribution ϵ ∼
N (0, (I)) and compute z = µ (x) +

∑
1/2 (x) ◦ ϵ, where µ

and σ are the mean and standard deviation of the latent variable
distribution.

As we address a semantic segmentation approach, we added
an extra encoder-decoder network to the architecture. That
fully convolutional network is responsible for the pixel-wise
classification, i.e., for assigning a class label to each input pixel
location.

The whole model is trained in an end-to-end fashion; the
loss function contains three components: a supervised latent
loss (i.e., cross-entropy loss), a reconstruction loss (i.e., L2
norm), and a latent loss for the unsupervised variables (i.e.,
KL-divergence). The total loss L is a weighted sum of the three
terms, and it is defined as follows:

L = λs

[
d∑
i=0

yilog (ŷi)

]
+ λr

[
∥x− x̂∥2

]
+

λu

[
1

2

k∑
i=0

(
σi + µ2

i − 1− log (σi)
)] (1)

where λs, λr , and λu, represent the weights of the supervised
latent loss, the reconstruction loss, and the unsupervised loss,
respectively.

At each training epoch, we compute the histogram Q̂i of each
latent variable zi(x) delivered by the VAE encoder. We further
assume that the latent variables are statistically independent
so that the probability of the latent representation z(x) =
[z1(x), ..., zk(x)] of sample x is given by

∏
i Q̂i.

The goal is that each subcategory of the training samples is
equally represented in each batch. Therefore, the DB-VAE
adopts the following probability of selecting a sample x for the
next batch:

W (z (x) | X) ∝
∏
i

1

Q̂i (zi (x) | X) + α
(2)

where α is the debiasing parameter, which tunes the degree
of debiasing during training. When α → 0, the samples of
the training batch tend to follow a uniform distribution over
the latent variables z. On the other hand, when α → ∞,
the training batch follows a random uniform sampling of the
original training dataset.
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Figure 1. Fully Debiasing Variational Autoencoder (Fully DB-VAE) for semantic segmentation.

3. EXPERIMENTS

In this section, we report the results obtained with the Fully
DB-VAE method in the deforestation detection application. We
start by providing information about the dataset used in the
experiments. Next, we describe the experimental setup, and
finally we analyze the results in terms of classification metrics
and visual interpretation. Furthermore, we compare the Fully
DB-VAE with the conventional U-Net (Ronneberger et al.,
2015), which was chosen as a baseline model.

3.1 Study Area

The study area comprises a Sentinel-2 scene, with a size of
17730 × 9200 pixels The region is located in Pará State, Brazil.
That State recorded one of the highest deforestation rates in
2021, according to the PRODES monitoring system (Assis
et al., 2019) from the Brazilian National Institute for Space
Research (INPE). We used all Sentinel-2 bands with spatial
resolutions of 10m and 20m. The 20m bands were
resampled to 10m using nearest neighbor interpolation. The
images were downloaded from the Google Earth Engine
(GEE) platform (Gorelick et al., 2017). we used Level-1C
images, which means they are orthorectified and contain
top-of-atmosphere reflectance data. The change map was
downloaded from the INPE web site, which is freely available
at the PRODES database 1.

1 Available at: http://terrabrasilis.dpi.inpe.br/map/deforestation

Figure 2. Geographical localization of the study area.

3.2 Experimental Setup

In all experiments, the input was a tensor resulting from the
concatenation of a bitemporal image pair, acquired at dates t0
and t1, along the spectral dimension. Next, each band was
normalized in the range of [−1, 1]. The study area was divided
into 20 large tiles, following a distribution of 40%−10%−50%
for training-validation-test. The input to the encoder networks
were patches of size 128× 128 pixels, extracted using a sliding
window procedure with a stride equal to 32.

Table 1 shows the acquisition dates of the Sentinel-2 data and
the class distribution of the study area. We are interested
in mapping the deforestation that occurred between 2020 and
2021. The dates of selected images are based on the PRODES
project, which uses images during the dry season, with the
minimum cloud cover. For date t1, the image data is a mosaic
composed of two Sentinel-2 scenes. The class deforestation
represents samples mapped as forest at epoch t0, and no
forest at epoch t1, the class no-deforestation corresponds to
samples mapped as forest at epoch t0 and t1, and the class
past-deforestation corresponds to all regions deforested before
epoch t0. It’s worth mentioning that this application presents a
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high level of class imbalance. Table 1 shows that less than 2%
of the study area corresponds to the deforestation class.

Date t0 July 15, 2020

Date t1
July 25, 2021

August 4, 2021
Class deforestation (%) 1.86

Class no-deforestation (%) 56.40
Class past-deforestation (%) 41.74

Table 1. Image acquisition dates and class distribution of the
study area.

Table 2 presents the Fully DB-VAE architectures, with
information in the corresponding layers of the encoders,
bottlenecks, and decoders. Furthermore, the following training
parameters were defined: batch size equal to 16; Adam
optimizer with learning rate equal to 2e−4, and β equal to 0.5.
Also, the early stopping strategy was used to avoid over-fitting.
The values of the loss function weights λs, λr , and λu were set
to 1.0, 1.0, and 5e−4, respectively.

Following the PRODES methodology, during training and
testing, we disregarded predictions within a two-pixel wide
buffer in the internal and external edges of all polygons
classified as deforestation in the reference change map.
Similarly, pixels corresponding to the past-deforestation (before
2020) and polygons smaller than 625 pixels (6,25 ha) were
ignored. The inference was carried out tile-wise, and each
experiment was run five times.

3.3 Results and Discussion

In this section, we present the obtained results using the Fully
DB-VAE. The classification performance was measured in
terms of Recall, Precision, and F1-score for the deforestation
class. Furthermore, for a visual interpretation, we present the
deforestation probability maps.

Figure 3 shows the accuracy values obtained in each
experiment. The first bar group represents the results for the
baseline, which was a conventional U-Net, using a random
sampling strategy for selecting the training samples. The
other bar groups present the metrics obtained for the Fully
DB-VAE with different values of α, starting from α = 1e−1
to α = 1e−10. According to the figure, one can notice that
the Fully DB-VAE obtained the highest Recall scores. Also, the
false deforestation predictions were lower than the baseline, but
Precision was also lower. However, in all the cases, it exceeded
80%. In terms of F1-score, the best result was achieved for
α = 1e−7, yielding a score of 79.5, about 5% higher than the
baseline.

As an additional experiment, we compared the performance
of the Fully DB-VAE with the U-Net architecture using an
arbitrary selection criterion in the training procedure: similar
to (Ortega Adarme et al., 2020, Ortega et al., 2021), we only
selected patches with at least 2% of pixels belonging to the class
deforestation. Figure 4 summarizes the results of the U-net and
the Fully DB-VAE with the two strategies for training sample
selection. For the experiments with the Fully DB-VAE we
defined α = 1e−7, which presented the best performance in
terms of the F1-score of previous results. We can observe the
Fully DB-VAE still yields the best performance, although the
results using the 2% selection criterion were better than with
the random selection.

For a visual analysis, Figure 5 illustrates the deforestation
probability maps of a snip in the test set. The maps represent
the average prediction map. They were generated for all
experiments using the U-Net as a baseline and the Fully
DB-VAE with different values of α. In the first line, the
RGB compositions of t0 and t1 are shown. Next, the class
label map with classes deforestation, no-deforestation and
past-deforestation is presented, as well as the outcome of the
U-Net using the training samples from the random selection
and from the 2% selection criteria. The second and third lines
depict the outcomes of the Fully DB-VAE modifying the value
of α. Red and blue colors represent the highest and lowest
probability of belonging to the deforestation class. The black
color symbolizes the past- deforestation class. Similar to the
classification metrics, we note that the Fully DB-VAE with
α = 7 delivered the most accurate and reliable outputs, i.e.,
with probabilities close to one. In addition, we observed that the
outcomes from the U-Net with random selection samples and
the Fully DB-VAE with α = 1e−1 and α = 1e−2 are farther
from the reference, delivering less reliable and less accurate
definition of the polygons of the class deforestation.

4. CONCLUSIONS

This work presented an extension of the debiasing variational
autoencoder (DB-VAE) architecture based on Fully
Convolutional Neural Networks (FCN), so called Fully
DB-VAE. The method was adapted to perform semantic
segmentation in the context of detection of deforestation spots
in a region of the Amazon Brazilian biome. In order to find
the optimal value of the debiasing parameter α, an ablation
study was carried out. The obtained results were compared
with a conventional U-Net model using two strategies for
training sample selection. The first one is a random approach,
and the second one only patches with at least 2% of pixels
belonging to the class deforestation were used. According to
the experiments, the best performance in terms of F1 − score
was achieved with α = 1e−7. In that case, the Fully DB-VAE
outperformed both baselines and delivered the most reliable
values in the deforestation probability maps.
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Figure 5. Visual example of a snip from the test set. The first line illustrates the RGB compositions of the snip in t0 and t1, the class
label map, and the baselines, using the U-Net architecture with two strategies of training sample selection. The second and third lines
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probability of belonging to the deforestation class. Black color symbolize the past deforestation.
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