34 research outputs found

    Annual cycles are the most common reproductive strategy in African tropical tree communities

    Get PDF
    Abstract We present the first cross‐continental comparison of the flowering and fruiting phenology of tropical forests across Africa. Flowering events of 5446 trees from 196 species across 12 sites and fruiting events of 4595 trees from 191 species across 11 sites were monitored over periods of 6 to 29 years and analyzed to describe phenology at the continental level. To study phenology, we used Fourier analysis to identify the dominant cycles of flowering and fruiting for each individual tree and we identified the time of year African trees bloom and bear fruit and their relationship to local seasonality. Reproductive strategies were diverse, and no single regular cycle was found in >50% of individuals across all 12 sites. Additionally, we found annual flowering and fruiting cycles to be the most common. Sub‐annual cycles were the next most common for flowering, whereas supra‐annual patterns were the next most common for fruiting. We also identify variation in different subsets of species, with species exhibiting mainly annual cycles most common in West and West Central African tropical forests, while more species at sites in East Central and East African forests showed cycles ranging from sub‐annual to supra‐annual. Despite many trees showing strong seasonality, at most sites some flowering and fruiting occurred all year round. Environmental factors with annual cycles are likely to be important drivers of seasonal periodicity in trees across Africa, but proximate triggers are unlikely to be constant across the continent.Additional co-authors: Roman M. Wittig, Thomas Breuer, Mireille Breuer‐Ndoundou Hockemba, Crickette M. Sanz, David B. Morgan, Anne E. Pusey, Badru Mugerwa, Baraka Gilagiza, Caroline Tutin, Corneille E. N. Ewango, Douglas Sheil, Edmond Dimoto, Fidèle Baya, Flort Bujo, Fredrick Ssali, Jean‐Thoussaint Dikangadissi, Kim Valenta, Michel Masozera, Michael L. Wilson, Robert Bitariho, Sydney T. Ndolo Ebika, Sylvie Gourlet‐Fleury, Felix Mulindahabi, Colin M. Beal

    Reanalysis in Earth System Science: Towards Terrestrial Ecosystem Reanalysis

    Get PDF
    A reanalysis is a physically consistent set of optimally merged simulated model states and historical observational data, using data assimilation. High computational costs for modelled processes and assimilation algorithms has led to Earth system specific reanalysis products for the atmosphere, the ocean and the land separately. Recent developments include the advanced uncertainty quantification and the generation of biogeochemical reanalysis for land and ocean. Here, we review atmospheric and oceanic reanalyses, and more in detail biogeochemical ocean and terrestrial reanalyses. In particular, we identify land surface, hydrologic and carbon cycle reanalyses which are nowadays produced in targeted projects for very specific purposes. Although a future joint reanalysis of land surface, hydrologic and carbon processes represents an analysis of important ecosystem variables, biotic ecosystem variables are assimilated only to a very limited extent. Continuous data sets of ecosystem variables are needed to explore biotic-abiotic interactions and the response of ecosystems to global change. Based on the review of existing achievements, we identify five major steps required to develop terrestrial ecosystem reanalysis to deliver continuous data streams on ecosystem dynamics

    Freshwater systems and ecosystem services: challenges and chances for crossfertilization of disciplines

    Get PDF
    Freshwater ecosystems are among the most threatened in the world, while providing numerous essential ecosystem services (ES) to humans. Despite their importance, research on freshwater ecosystem services is limited. Here, we examine how freshwater studies could help to advance ES research and vice versa. We summarize major knowledge gaps and suggest solutions focusing on science and policy in Europe. We found several features that are unique to freshwater ecosystems, but often disregarded in ES assessments. Insufficient transfer of knowledge towards stakeholders is also problematic. Knowledge transfer and implementation seems to be less effective towards South-east Europe. Focusing on the strengths of freshwater research regarding connectivity, across borders, involving multiple actors can help to improve ES research towards a more dynamic, landscape-level approach, which we believe can boost the implementation of the ES concept in freshwater policies. Bridging these gaps can contribute to achieve the ambitious targets of the EU’s Green Deal

    A global agenda for advancing freshwater biodiversity research

    Get PDF
    This manuscript is a contribution of the Alliance for Freshwater Life (www.allianceforfreshwaterlife.org). We thank Nick Bond, Lisa Bossenbroek, Lekima Copeland, Dean Jacobsen, Maria Cecilia Londo?o, David Lopez, Jaime Ricardo Garcia Marquez, Ketlhatlogile Mosepele, Nunia Thomas-Moko, Qiwei Wei and the authors of Living Waters: A Research Agenda for the Biodiversity of Inland and Coastal Waters for their contributions. We also thank Peter Thrall, Ian Harrison and two anonymous referees for their valuable comments that helped improve the manuscript. Open access funding enabled and organised by Projekt DEAL

    A global agenda for advancing freshwater biodiversity research

    Get PDF
    Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.Peer reviewe

    Annual cycles are the most common reproductive strategy in African tropical tree communities

    Get PDF
    We present the first cross continental comparison of the flowering and fruiting phenology of tropical forests across Africa. Flowering events of 5,446 trees from 196 species across 12 sites, and fruiting events of 4,595 trees from 191 species, across 11 sites were monitored over periods of 6 to 29 years, and analysed to describe phenology at the continental level. To study phenology we used Fourier analysis to identify the dominant cycles of flowering and fruiting for each individual tree and we identified the time of year African trees bloom and bear fruit and their relationship to local seasonality. Reproductive strategies were diverse and no single regular cycle was found in >50% of individuals across all 12 sites. Additionally, we found annual flowering and fruiting cycles to be the most common. Sub-annual cycles were the next most common for flowering whereas supra-annual patterns were the next most common for fruiting. We also identify variation in different subsets of species, with species exhibiting mainly annual cycles most common in West and West-Central African tropical forests, while more species at sites in East-Central and Eastern African forests showed cycles ranging from sub-annual to supra-annual. Despite many trees showing strong seasonality, at most sites some flowering and fruiting occurred all year round. Environmental factors with annual cycles are likely to be important drivers of seasonal periodicity in trees across Africa, but proximate triggers are unlikely to be constant across the continen

    Air Quality Measurements in Kitchener, Ontario, Canada Using Multisensor Mini Monitoring Stations

    No full text
    The Region of Waterloo is the third fastest growing region in Southern Ontario in Canada with a population of 619,000 as of 2019. However, only one air quality monitoring station, located in a city park in Kitchener, Ontario, is currently being used to assess the air quality of the region. In September 2020, a network of AQMesh Multisensor Mini Monitoring Stations (pods) were installed near elementary schools in Kitchener located near different types of emission source. Data analysis using a custom-made long-distance scaling software showed that the levels of nitrogen oxides (NO and NO2), ground level ozone (O3), and fine particulate matter (PM2.5) were traffic related. These pollutants were used to calculate the Air Quality Health Index-Plus (AQHI+) at each location, highlighting the inability of the provincial air quality monitoring station to detect hotspot areas in the city. The case study presented here quantified the impact of the 2021 summer wildfires on the local air quality at a high time resolution (15-min). The findings in this article show that these multisensor pods are a viable alternative to expensive research-grade equipment. The results highlight the need for networks of local scale air quality measurements, particularly in fast-growing cities in Canada

    Density Functional Theory Calculations on the Complexation of <i>p</i>‑Arsanilic Acid with Hydrated Iron Oxide Clusters: Structures, Reaction Energies, and Transition States

    No full text
    Aromatic organoarsenicals, such as <i>p</i>-arsanilic acid (pAsA), are still used today as feed additives in the poultry and swine industries in developing countries. Through the application of contaminated litter as a fertilizer, these compounds enter the environment and interact with reactive soil components such as iron and aluminum oxides. Little is known about these surface interactions at the molecular level. We report density functional theory (DFT) calculations on the energies, optimal geometries, and vibrational frequencies for hydrated pAsA/iron oxide complexes, as well as changes in Gibbs free energy, enthalpy, and entropy for various types of ligand exchange reactions leading to both inner- and outer-sphere complexes. Similar calculations using arsenate are also shown for comparison, along with activation barriers and transition state geometries between inner-sphere complexes. Minimum energy calculations show that the formation of inner- and outer-sphere pAsA/iron oxide complexes is thermodynamically favorable, with the monodentate mononuclear complexes being the most favorable. Interatomic As–Fe distances are calculated to be between 3.3 and 3.5 Å for inner-sphere complexes and between 5.2 and 5.6 Å for outer-sphere complexes. In addition, transition state calculations show that activation energies greater than 23 kJ/mol are required to form the bidentate binuclear pAsA/iron oxide complexes, and that formation of arsenate bidentate binuclear complexes is thermodynamically -rather than kinetically- driven. Desorption thermodynamics using phosphate ions show that reactions are most favorable using HPO<sub>4</sub><sup>2–</sup> species. The significance of our results for the overall surface complexation mechanism of pAsA and arsenate is discussed
    corecore