65 research outputs found

    The mysteries of mammatus clouds: Observations and formation mechanisms

    Get PDF
    Mammatus clouds are an intriguing enigma of atmospheric fluid dynamics and cloud physics. Most commonly observed on the underside of cumulonimbus anvils, mammatus also occur on the underside of cirrus, cirrocumulus, altocumulus, altostratus, and stratocumulus, as well as in contrails from jet aircraft and pyrocumulus ash clouds from volcanic eruptions. Despite their aesthetic appearance, mammatus have been the subject of few quantitative research studies. Observations of mammatus have been obtained largely through serendipitous opportunities with a single observing system (e.g., aircraft penetrations, visual observations, lidar, radar) or tangential observations from field programs with other objectives. Theories describing mammatus remain untested, as adequate measurements for validation do not exist because of the small distance scales and short time scales of mammatus. Modeling studies of mammatus are virtually nonexistent. As a result, relatively little is known about the environment, formation mechanisms, properties, microphysics, and dynamics of mammatus. This paper presents a review of mammatus clouds that addresses these mysteries. Previous observations of mammatus and proposed formation mechanisms are discussed. These hypothesized mechanisms are anvil subsidence, subcloud evaporation/sublimation, melting, hydrometeor fallout, cloud-base detrainment instability, radiative effects, gravity waves, Kelvin-Helmholtz instability, Rayleigh-Taylor instability, and Rayleigh-Bénard-like convection. Other issues addressed in this paper include whether mammatus are composed of ice or liquid water hydrometeors, why mammatus are smooth, what controls the temporal and spatial scales and organization of individual mammatus lobes, and what are the properties of volcanic ash clouds that produce mammatus? The similarities and differences between mammatus, virga, stalactites, and reticular clouds are also discussed. Finally, because much still remains to be learned, research opportunities are described for using mammatus as a window into the microphysical, turbulent, and dynamical processes occurring on the underside of clouds. © 2006 American Meteorological Society

    Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci.

    Get PDF
    We report full-length draft de novo genome assemblies for 16 widely used inbred mouse strains and find extensive strain-specific haplotype variation. We identify and characterize 2,567 regions on the current mouse reference genome exhibiting the greatest sequence diversity. These regions are enriched for genes involved in pathogen defence and immunity and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. We used these genomes to improve the mouse reference genome, resulting in the completion of 10 new gene structures. Also, 62 new coding loci were added to the reference genome annotation. These genomes identified a large, previously unannotated, gene (Efcab3-like) encoding 5,874 amino acids. Mutant Efcab3-like mice display anomalies in multiple brain regions, suggesting a possible role for this gene in the regulation of brain development

    Properties of Rubble-Pile Asteroid (101955) Bennu from OSIRIS-REx Imaging and Thermal Analysis

    Get PDF
    Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the formation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu's surface is globally rough, dense with boulders, and low in albedo. The number of boulders is surprising given Bennu's moderate thermal inertia, suggesting that simple models linking thermal inertia to particle size do not adequately capture the complexity relating these properties. At the same time, we find evidence for a wide range of particle sizes with distinct albedo characteristics. Our findings imply that ages of Bennu's surface particles span from the disruption of the asteroid's parent body (boulders) to recent in situ production (micrometre-scale particles)

    The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

    Get PDF
    The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids

    Evidence for widespread hydrated minerals on asteroid (101955) Bennu

    Get PDF
    Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 ”m and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4 ”m) Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth

    Precision mouse models with expanded tropism for human pathogens

    Get PDF
    A major limitation of current humanized mouse models is that they primarily enable the analysis of human-specific pathogens that infect hematopoietic cells. However, most human pathogens target other cell types, including epithelial, endothelial and mesenchymal cells. Here, we show that implantation of human lung tissue, which contains up to 40 cell types, including nonhematopoietic cells, into immunodeficient mice (lung-only mice) resulted in the development of a highly vascularized lung implant. We demonstrate that emerging and clinically relevant human pathogens such as Middle East respiratory syndrome coronavirus, Zika virus, respiratory syncytial virus and cytomegalovirus replicate in vivo in these lung implants. When incorporated into bone marrow/liver/thymus humanized mice, lung implants are repopulated with autologous human hematopoietic cells. We show robust antigen-specific humoral and T-cell responses following cytomegalovirus infection that control virus replication. Lung-only mice and bone marrow/liver/thymus-lung humanized mice substantially increase the number of human pathogens that can be studied in vivo, facilitating the in vivo testing of therapeutics

    Correlated biomarker responses for DNA damage and innate immunity revealed in a comparison between field and laboratory studies: Fathead Minnow Exposed to Tritium

    No full text
    International audienceTritium entering the aquatic environment contributes to the doses received by aquatic organisms. Multiple stressors inherent in natural environments, however, confound estimates for radio-sensitivity determined in controlled laboratory settings. To disentangle differences between field and laboratory outcomes, a multivariate analysis of biomarkers is described for fathead minnows (Pimephales promelas) exposed to tritium for 60 days and allowed to depurate for 60 days. In the laboratory study, the biomarkers for DNA damage and innate immunity display a dose-response relationship to internalized tritium. At the same tritium activity concentrations, the biomarkers for genotoxicity from the field study were lower than those from the laboratory study. This finding does not support an increase in genotoxic stress or sensitivity in the field-exposed fish, as was suggested by a meta-analysis comparing field data for radiation exposure from the Chernobyl exclusion zone and data from laboratory studies.In the laboratory, we see strong correlations between tritium exposure (up to 180 kBq/L), DNA damage (comet and micronuclei formation in gonad) and innate immune responses (phagocytosis and fluorescence associated with lysosomal membrane integrity in spleen). In the field, we see a high proportion of phagocytosis where the comet tail moment, but not the micronucleus frequency, correlated with fluorescence associated with lysosomal membrane integrity in spleen.The biomarkers for oxidative stress (catalase and superoxide dismutase) were specific to each study location with higher liver catalase activity in the laboratory exposures and higher superoxide dismutase in the field exposures. Indicators of overall health were not different between exposures, locations, or weight, length and organ somatic indices. This comparison highlights the relevance for using the DNA damages and innate immune system response endpoints as biomarkers of chronic low-dose tritium exposure, and the need to obtain a better mechanistic understanding of initiating events for the immune response
    • 

    corecore