143 research outputs found

    The SWELLS survey. IV. Precision measurements of the stellar and dark matter distributions in a spiral lens galaxy

    Get PDF
    We construct a fully self-consistent mass model for the lens galaxy J2141 at z=0.14, and use it to improve on previous studies by modelling its gravitational lensing effect, gas rotation curve and stellar kinematics simultaneously. We adopt a very flexible axisymmetric mass model constituted by a generalized NFW dark matter halo and a stellar mass distribution obtained by deprojecting the MGE fit to the high-resolution K'-band LGSAO imaging data of the galaxy, with the (spatially constant) M/L ratio as a free parameter. We model the stellar kinematics by solving the anisotropic Jeans equations. We find that the inner logarithmic slope of the dark halo is weakly constrained (gamma = 0.82^{+0.65}_{-0.54}), and consistent with an unmodified NFW profile. We infer the galaxy to have (i) a dark matter fraction within 2.2 disk radii of 0.28^{+0.15}_{-0.10}, independent of the galaxy stellar population, implying a maximal disk for J2141; (ii) an apparently uncontracted dark matter halo, with concentration c_{-2} = 7.7_{-2.5}^{+4.2} and virial velocity v_{vir} = 242_{-39}^{+44} km/s, consistent with LCDM predictions; (iii) a slightly oblate halo (q_h = 0.75^{+0.27}_{-0.16}), consistent with predictions from baryon-affected models. Comparing the stellar mass inferred from the combined analysis (log_{10} Mstar/Msun = 11.12_{-0.09}^{+0.05}) with that inferred from SPS modelling of the galaxies colours, and accounting for a cold gas fraction of 20+/-10%, we determine a preference for a Chabrier IMF over Salpeter IMF by a Bayes factor of 5.7 (substantial evidence). We infer a value beta_{z} = 1 - sigma^2_{z}/sigma^2_{R} = 0.43_{-0.11}^{+0.08} for the orbital anisotropy parameter in the meridional plane, in agreement with most studies of local disk galaxies, and ruling out at 99% CL that the dynamics of this system can be described by a two-integral distribution function. [Abridged]Comment: Accepted for publication in MNRAS. 17 pages, 9 figure

    The SWELLS Survey. I. A large spectroscopically selected sample of edge-on late-type lens galaxies

    Get PDF
    The relative contribution of baryons and dark matter to the inner regions of spiral galaxies provides critical clues to their formation and evolution, but it is generally difficult to determine. For spiral galaxies that are strong gravitational lenses, however, the combination of lensing and kinematic observations can be used to break the disk-halo degeneracy. In turn, such data constrain fundamental parameters such as i) the mass density profile slope and axis ratio of the dark matter halo, and by comparison with dark matter-only numerical simulations the modifications imposed by baryons; ii) the mass in stars and therefore the overall star formation efficiency, and the amount of feedback; iii) by comparison with stellar population synthesis models, the normalization of the stellar initial mass function. In this first paper of a series, we present a sample of 16 secure, 1 probable, and 6 possible strong lensing spiral galaxies, for which multi-band high-resolution images and rotation curves were obtained using the Hubble Space Telescope and Keck-II Telescope as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS). The sample includes 8 newly discovered secure systems. [abridged] We find that the SWELLS sample of secure lenses spans a broad range of morphologies (from lenticular to late-type spiral), spectral types (quantified by Halpha emission), and bulge to total stellar mass ratio (0.22-0.85), while being limited to M_*>10^{10.5} M_sun. The SWELLS sample is thus well-suited for exploring the relationship between dark and luminous matter in a broad range of galaxies. We find that the deflector galaxies obey the same size-mass relation as that of a comparison sample of elongated non-lens galaxies selected from the SDSS survey. We conclude that the SWELLS sample is consistent with being representative of the overall population of high-mass high-inclination disky galaxies.Comment: 21 pages, 6 figures, MNRAS, in pres

    The SWELLS survey. III. Disfavouring "heavy" initial mass functions for spiral lens galaxies

    Get PDF
    We present gravitational lens models for 20 strong gravitational lens systems observed as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS) project. Fifteen of the lenses are taken from paper I while five are newly discovered systems. The systems are galaxy-galaxy lenses where the foreground deflector has an inclined disc, with a wide range of morphological types, from late-type spiral to lenticular. For each system, we compare the total mass inside the critical curve inferred from gravitational lens modelling to the stellar mass inferred from stellar population synthesis (SPS) models, computing the stellar mass fraction f* = M(SPS)/M(lens). We find that, for the lower mass SWELLS systems, adoption of a Salpeter stellar initial mass function (IMF) leads to estimates of f* that exceed 1. This is unphysical, and provides strong evidence against the Salpeter IMF being valid for these systems. Taking the lower mass end of the SWELLS sample sigma(SIE) < 230 km/s, we find that the IMF is lighter (in terms of stellar mass-to-light ratio) than Salpeter with 98% probability, and consistent with the Chabrier IMF and IMFs between the two. This result is consistent with previous studies of spiral galaxies based on independent techniques. In combination with recent studies of massive early-type galaxies that have favoured a heavier Salpeter-like IMF, this result strengthens the evidence against a universal stellar IMF.Comment: Accepted for publication in MNRAS. Some changes (none major) to address the referee's comments. 18 pages, 8 figure

    Post-exercise cold-water immersion modulates skeletal muscle PGC-1α mRNA expression in immersed and non-immersed limbs: evidence of systemic regulation

    Get PDF
    Mechanisms mediating post-exercise cold-induced increases in PGC-1α gene expression in human skeletal muscle are yet to be fully elucidated, but may involve local cooling effects on AMPK and p38 MAPK related signalling and/or increased systemic β-adrenergic stimulation. We aimed to therefore examine whether post-exercise cold-water immersion enhancement of PGC-1α mRNA is mediated through local or systemic mechanisms. Ten subjects completed acute cycling (8x5 min at ~80% peak power output) followed by seated-rest (CON) or single-leg cold-water immersion (CWI; 10 min, 8°C). Muscle biopsies were obtained pre-, post- and 3 h post-exercise from a single limb in the CON condition but from both limbs in CWI (thereby providing tissue from a CWI and non-immersed limb, NOT). Muscle temperature decreased up to 2 h post-exercise following CWI (-5°C) in the immersed limb, with lesser changes observed in CON and NOT (-3°C; P<0.05). No differences between limbs were observed in p38MAPK phosphorylation at any time point (P<0.05), whilst a significant interaction effect was present for AMPK phosphorylation (P=0.031). Exercise (CON) increased gene expression of PGC-1α 3 h post-exercise (~5-fold; P<0.001). CWI augmented PGC-1α expression above CON in both the immersed (CWI; ~9-fold; P=0.003) and NOT limbs (~12-fold; P=0.001). Plasma Normetanephrine concentration was higher in CWI vs. CON immediately post-immersion (860 vs. 665 pmol/L; P=0.034). We report for the first time that local cooling of the immersed limb evokes transcriptional control of PGC1-α in the non-immersed limb, suggesting increased systemic β-adrenergic activation of AMPK mediates, in part, post-exercise cold-induction of PGC-1α mRNA

    ATM as a memory interconnect in a Desk Area Network

    Full text link

    The SWELLS survey. II. Breaking the disk-halo degeneracy in the spiral galaxy gravitational lens SDSS J2141-0001

    Get PDF
    The degeneracy among the disk, bulge and halo contributions to galaxy rotation curves prevents an understanding of the distribution of baryons and dark matter in disk galaxies. In an attempt to break this degeneracy, we present an analysis of the spiral galaxy strong gravitational lens SDSS J2141-0001, discovered as part of the SLACS survey. We present new Hubble Space Telescope multicolor imaging, gas and stellar kinematics data derived from long-slit spectroscopy, and K-band LGS adaptive optics imaging, both from the Keck telescopes. We model the galaxy as a sum of concentric axisymmetric bulge, disk and halo components and infer the contribution of each component, using information from gravitational lensing and gas kinematics. This analysis yields a best-fitting total (disk plus bulge) stellar mass of log_{10}(Mstar/Msun) = 10.99(+0.11,-0.25). The photometric data combined with stellar population synthesis models yield log_{10}(Mstar/Msun) = 10.97\pm0.07, and 11.21\pm0.07 for the Chabrier and Salpeter IMFs, respectively. Accounting for the expected gas fraction of \simeq 20% reduces the lensing plus kinematics stellar mass by 0.10\pm0.05 dex, resulting in a Bayes factor of 11.9 in favor of a Chabrier IMF. The dark matter halo is roughly spherical, with minor to major axis ratio q_{halo}=0.91(+0.15,-0.13). The dark matter halo has a maximum circular velocity of V_{max}=276(+17,-18) km/s, and a central density parameter of log_{10}\Delta_{V/2}=5.9(+0.9,-0.5). This is higher than predicted for uncontracted dark matter haloes in LCDM cosmologies, log_{10}\Delta_{V/2}=5.2, suggesting that either the halo has contracted in response to galaxy formation, or that the halo has a higher than average concentration. At 2.2 disk scale lengths the dark matter fraction is f_{DM}=0.55(+0.20,-0.15), suggesting that SDSS J2141-0001 is sub-maximal.Comment: 24 pages, 20 figures, accepted to MNRAS, minor change

    The SWELLS survey:V. A Salpeter stellar initial mass function in the bulges of massive spiral galaxies

    Get PDF
    Recent work has suggested that the stellar initial mass function (IMF) is not universal, but rather is correlated with galaxy stellar mass, stellar velocity dispersion or morphological type. In this paper, we investigate variations of the IMF within individual galaxies. For this purpose, we use strong lensing and gas kinematics to measure independently the normalization of the IMF of the bulge and disc components of a sample of five massive spiral galaxies with substantial bulge components taken from the Sloan WFC Edge-on Late-type Lens Survey (SWELLS). We find that the stellar masses of the bulges are tightly constrained by the lensing and kinematic data. A comparison with masses based on stellar population synthesis models fitted to optical and near-infrared photometry favours a Salpeter-like normalization of the IMF. Conversely, the disc masses are less well constrained due to degeneracies with the dark matter halo, but are consistent with Milky Way-type IMFs in agreement with previous studies. The discs are submaximal at 2.2 disc scale lengths, but due to the contribution of the bulges, the galaxies are baryon dominated at 2.2 disc scale lengths. Globally, our inferred IMF normalization is consistent with that found for early-type galaxies of comparable stellar mass (>10(11) M-circle dot). Our results suggest a non-universal IMF within the different components of spiral galaxies, adding to the well-known differences in stellar populations between discs and bulges

    A Stated Preference Investigation into the Chinese Demand for Farmed vs. Wild Bear Bile

    Get PDF
    Farming of animals and plants has recently been considered not merely as a more efficient and plentiful supply of their products but also as a means of protecting wild populations from that trade. Amongst these nascent farming products might be listed bear bile. Bear bile has been exploited by traditional Chinese medicinalists for millennia. Since the 1980s consumers have had the options of: illegal wild gall bladders, bile extracted from caged live bears or the acid synthesised chemically. Despite these alternatives bears continue to be harvested from the wild. In this paper we use stated preference techniques using a random sample of the Chinese population to estimate demand functions for wild bear bile with and without competition from farmed bear bile. We find a willingness to pay considerably more for wild bear bile than farmed. Wild bear bile has low own price elasticity and cross price elasticity with farmed bear bile. The ability of farmed bear bile to reduce demand for wild bear bile is at best limited and, at prevailing prices, may be close to zero or have the opposite effect. The demand functions estimated suggest that the own price elasticity of wild bear bile is lower when competing with farmed bear bile than when it is the only option available. This means that the incumbent product may actually sell more items at a higher price when competing than when alone in the market. This finding may be of broader interest to behavioural economists as we argue that one explanation may be that as product choice increases price has less impact on decision making. For the wildlife farming debate this indicates that at some prices the introduction of farmed competition might increase the demand for the wild product

    Caesium incorporation and retention in illite interlayers

    Get PDF
    Radioactive caesium (chiefly 137Cs) is a major environmental pollutant. The mobility of Cs in temperate soils is primarily controlled by sorption onto clay minerals, particularly the frayed edges of illite interlayers. This paper investigates the adsorption of Cs to illite at the molecular scale, over both the short and long term. Transmission electron microscopy (TEM) images showed that after initial absorption into the frayed edges, Cs migrated into the illite interlayer becoming incorporated within the mineral structure. Caesium initially exchanged with hydrated Ca at the frayed edges, causing them to collapse. This process was irreversible as Cs held in the collapsed interlayers was not exchangeable with Ca. Over the long term Cs did not remain at the edge of the illite crystals, but diffused into the interlayers by exchange with K. Results from extended X-ray absorption fine structure spectroscopy (EXAFS) and density functional theory modelling confirmed that Cs was incorporated into the illite interlayer and revealed its bonding environment

    Positive Social Interactions and the Human Body at Work: Linking Organizations and Physiology

    Full text link
    • …
    corecore