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ABSTRACT
We construct a fully self-consistent mass model for the lens galaxy SDSS J2141 at redshift
0.14, and use it to improve on previous studies by modelling its gravitational lensing effect, gas
rotation curve and stellar kinematics simultaneously. We adopt a very flexible axisymmetric
mass model constituted by a generalized Navarro–Frenk–White (NFW) dark matter halo and
a stellar mass distribution obtained by deprojecting the multi-Gaussian expansion fit to the
high-resolution K′-band laser guide star adaptive optics imaging data of the galaxy, with the
(spatially constant) mass-to-light ratio as a free parameter. We model the stellar kinematics
by solving the anisotropic Jeans equations. We find that the inner logarithmic slope of the
dark halo is weakly constrained, i.e. γ = 0.82+0.65

−0.54, and consistent with an unmodified NFW
profile; we can conclude, however, that steep profiles (γ ≥ 1.5) are disfavoured (<14 per cent
posterior probability). We marginalize over this parameter to infer the galaxy to have (i) a dark
matter fraction within 2.2 disc radii of 0.28+0.15

−0.10, independent of the galaxy stellar population,
implying a maximal disc for SDSS J2141; (ii) an apparently uncontracted dark matter halo,
with concentration c−2 = 7.7+4.2

−2.5 and virial velocity vvir = 242+44
−39 km s−1, consistent with �

cold dark matter (�CDM) predictions; (iii) a slightly oblate halo (qh = 0.75+0.27
−0.16), consistent

with predictions from baryon-affected models. Comparing the tightly constrained gravitational
stellar mass inferred from the combined analysis (log10 M�/M� = 11.12+0.05

−0.09) with that
inferred from stellar population modelling of the galaxies’ colours, and accounting for an
expected cold gas fraction of 20 ± 10 per cent, we determine a preference for a Chabrier IMF
over Salpeter IMF by a Bayes factor of 5.7 (corresponding to substantial evidence). We infer a
value βz ≡ 1−σ 2

z /σ 2
R = 0.43+0.08

−0.11 for the orbital anisotropy parameter in the meridional plane,
in agreement with most studies of local disc galaxies, and ruling out at 99 per cent confidence
level that the dynamics of this system can be described by a two-integral distribution function.
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haloes – galaxies: kinematics and dynamics – galaxies: spiral – galaxies: structure.
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1 IN T RO D U C T I O N

Measuring the relative contribution of luminous and dark matter in
spiral galaxies is essential to understand their internal structure and
therefore constrain the physical processes that drive their formation
and evolution (e.g. Dutton et al. 2011a). Traditionally this is done by
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means of detailed stellar and gas kinematics and stellar population
diagnostics (e.g. Bershady et al. 2011). However, often one needs
additional assumptions about the relative contribution of the stars
and dark matter (e.g. van Albada & Sancisi 1986) or about the stellar
initial mass function (IMF; e.g. Bell & de Jong 2001).

The combination of strong gravitational lensing and galaxy kine-
matics is a powerful tool for constraining the mass distribution and
the dynamical structure of galaxies beyond the local Universe, since
this approach makes it possible to overcome many of the difficul-
ties associated with the traditional techniques, which are severely
limited when applied to distant objects (see e.g. Treu & Koopmans
2002, 2004; Barnabè & Koopmans 2007; Jiang & Kochanek 2007;
Grillo et al. 2008; Koopmans et al. 2009; Auger et al. 2010b;
Barnabè et al. 2010, 2011). In particular, gravitational lenses in
which the deflector contains a high-inclination disc provide extra
(geometrical) information to help disentangle the distribution of
baryons and dark matter, and to measure the 3D shape of the dark
matter halo (e.g. Keeton & Kochanek 1998; Koopmans, de Bruyn
& Jackson 1998; Maller et al. 2000; Trott et al. 2010; Dutton et al.
2011b, hereafter Paper II; Suyu et al. 2011). Because these mea-
sured masses are gravitational, they can be compared with the stellar
mass from stellar population synthesis (SPS) models and so used
to constrain the form of the stellar IMF, and the response of dark
matter haloes to galaxy formation.

Until recently, only a small number of gravitational lenses with
high-inclination discs were known. The Sloan Lens Advance Cam-
era for Survey (SLACS) (Bolton et al. 2006, 2008) and SWELLS
(Treu et al. 2011, hereafter Paper I) surveys have significantly in-
creased the number of known gravitational lenses in which the
deflector contains a high-inclination disc, including several disc-
dominated systems.

One of the most promising spiral lens systems for a joint lens-
ing and dynamics analysis is SDSS J2141−0001 (hereafter simply
referred to as SDSS J2141 for brevity), at redshift zlens = 0.1380,
which is a disc-dominated galaxy (it has a disc K′-band light frac-
tion of � 80 per cent) at high inclination (i � 78◦). In addition to
the discovery data from the SLACS survey, a wealth of imaging and
kinematic data is available from the SWELLS project (Papers I and
II). A joint strong lensing and gas kinematics (rotation curve) anal-
ysis of SDSS J2141 conducted in Paper II yielded a gravitational
stellar mass of log10(M�/M�) = 10.99+0.11

−0.25 (consistent with that
from a stellar population analysis assuming a Chabrier IMF), a dark
matter fraction at 2.2 disc scale lengths of fDM = 0.55+0.20

−0.15 and a
dark matter halo flattening of qh = 0.91+0.15

−0.13. However, in that work,
simple phenomenological (‘Chameleon’) models for all three mass
components, i.e. the dark matter halo and the stellar bulge and disc,
were assumed. Moreover, only a fraction of the available kinematic
data for the lens galaxy was used: the stellar velocity dispersion and
rotation curve were not considered. Indeed, the velocity dispersion
could not be predicted self-consistently within the assumed model.

In this paper we improve on the Paper II analysis of SDSS J2141
in several important ways. The main improvement is the inclusion of
stellar kinematics data, which provide a mass constraint at smaller
radii than obtained from lensing or gas kinematics. It is well known
that disc galaxies are usually characterized by a velocity dispersion
ellipsoid flattened along the vertical direction: therefore, in order to
provide an accurate description of the data set, we model the stellar
kinematics by means of anisotropic Jeans equations, which allow
us to properly take into account (and recover) the anisotropy ratio
parameter βz. In addition to this, we use more flexible and general
models for both the stellar and the dark matter density profiles.
Specifically, we obtain the stellar mass density profile from the

deprojection of the observed luminous distribution [fitted with the
state-of-the-art method of multi-Gaussian expansion (MGE; see
Cappellari 2002)], rather than the sum of two ‘Chameleon’ profiles,
which were used to approximate a Sérsic profile bulge (Sérsic 1968)
and an exponential disc. Finally, here we model the dark matter
halo with an ellipsoidal generalized Navarro–Frenk–White (gNFW)
profile (inner logarithmic slope −γ , outer slope −3) rather than the
non-singular isothermal ellipsoid (NIE; inner slope 0, outer slope
−2) with a fixed density profile in the inner regions used in the
previous analysis.

The resulting model is both self-consistent and, in the case of the
dark matter halo, physically motivated, and allows us to attempt to
fit all the data we have for SDSS J2141 simultaneously. We use it
to answer the following questions about SDSS J2141. How much
does dark matter contribute to the total mass of this disc galaxy, in
particular in the inner regions? What is the concentration and inner
profile slope of its dark matter halo? What is its halo’s shape? When
calibrated via its stellar mass distribution’s gravitational effects,
what galaxy-averaged IMF do we infer from an SPS analysis of
its optical and near-infrared colours? What is the vertical-to-radial
anisotropy of its velocity dispersion ellipsoid?

This paper is structured as follows. We first describe our obser-
vational data (imaging for the lens modelling, spectroscopy for the
stellar and gas kinematics) in Section 2. We then outline our mass
model for SDSS J2141 in Section 3, giving the functional forms we
use to describe its stellar and dark matter distributions. Then, in
Sections 4 and 5 we show how our model predicts both the lensing
and kinematic data in a self-consistent way, and in Section 6 we
review the probability theory behind the actual inference procedure
we follow. In Section 7 we present and discuss the results of our
analysis, and in Section 8 we draw conclusions, providing an answer
to the questions posed above.

Throughout this work, we assume a flat � cold dark matter
(�CDM) cosmology with present-day matter density, �m = 0.3,
and Hubble parameter, H0 = 70 km s−1 Mpc.

2 O BSERVATI ONS

In this section we briefly recall the data set available for this study.
A more detailed description of the data is given in Paper II.

2.1 Imaging data

The imaging data consist of a high spatial resolution [full width at
half-maximum (FWHM) � 0.15 arcsec] K′-band image taken with
adaptive optics on the Keck II telescope. The galaxy-subtracted
image (see Paper II) is used for the strong lensing analysis, while the
light profile of the galaxy is fitted with a set of elliptical Gaussians
which are deconvolved and deprojected to provide a 3D model of
the stellar mass (up to the normalization), as detailed in Section 3.1.
The lens-subtracted image used as data set for the lensing analysis
is shown in the upper-right panel of Fig. 1. Multiband Hubble Space
Telescope (HST) photometry is also available and used to determine
stellar mass as discussed in Papers I and II.

2.2 Kinematic data

The second set of data that we will use to constrain our mass model
is the rotation and velocity dispersion profiles derived from optical
emission- and absorption-line spectroscopy. A major axis long-
slit spectrum of SDSS J2141 was obtained with the DEep Imaging
Multi-Object Spectrograph (DEIMOS) on the Keck II 10-m tele-
scope.

C© 2012 The Authors, MNRAS 423, 1073–1088
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The SWELLS survey – IV 1075

Figure 1. Lensed image reconstruction obtained from the MAP model.
From the top left-hand panel to the bottom right-hand panel: reconstructed
source; HST/Advanced Camera for Survey (ACS) data showing the observed
lensed image after subtraction of the lens galaxy; lensed image reconstruc-
tion corresponding to the source in the first panel; residuals.

We used the 1200 line grating (corresponding to a pixel scale of
0.32 Å) with a 1-arcsec width slit resulting in a spectral resolution of
∼1.9 Å. The wavelength range was 5200–7800 Å, covering several
prominent emission and absorption lines. At the wavelength of Mgb
the velocity resolution is σ res � 41 km s−1 , and for Hα it is σ res

� 32 km s−1. We took three exposures of 1200 s in excellent seeing
conditions of 0.60 arcsec. The spectra were reduced using routines
developed by D. Kelson (Kelson 2003).

Kinematic parameters were measured from 1D spectra extracted
along the slit with a spatial sampling of �0.59 arcsec (5 DEIMOS
pixels), corresponding to one data point per seeing FWHM. The
rotation and velocity dispersion profile of the stars were obtained
by fitting a region including the Mgb [5177 Å] and Fe II [5270 Å]
lines with a set of stellar templates.

The rotation curve of the ionized gas was measured by fitting
Gaussians to the Hα line [6563 Å], and is shown in the upper panel
of Fig. 2 (data points with error bars). Outside of the inner ∼2 arcsec
the velocity dispersion of the Hα line was equal to the instrumental
resolution, indicating the ionized gas disc is dynamically cold.

In our dynamical model (see Section 5), we assume that the ion-
ized gas traces the circular velocity of the galaxy (i.e. there is no
pressure support). For the stellar kinematics, our model implicitly
includes rotation and dispersion, although neither of these param-
eters is fitted to directly. Instead, our model predicts the projected
second velocity moment, which is fitted to the rms velocity of
the stars, vrms(R) =

√
v2

rot(R) + σ 2(R) (see Cappellari 2008). The
lower panel of Fig. 2 shows the observables vrot and σ (as green and
red data points, respectively) as well as the rms velocity (blue data
points).

In our modelling, as described in Paper II, we conservatively
exclude from the fit the data points of the gas rotation curve that
are (i) within the inner 2 arcsec (due to uncertainties and likely
asymmetries in the Hα distribution in this region) and (ii) beyond
3.5 arcsec on the western side of the rotation curve (where there is

Figure 2. Observed gas and stellar kinematics compared to the predictions
of the MAP model. The upper panel shows the galaxy Hα rotation curve
(blue data points): the red line represents the intrinsic model circular ve-
locity, while the black line gives the predicted observable, i.e. the model
circular velocity after the beam smearing, finite slit width and inclination
effects are taken into account. The light blue data points are not used to
constrain the model (see text). The lower panel shows the model projected
second velocity moment μ2 (black line) compared to the corresponding ob-
servational quantity vrms (blue data points). The stellar kinematic data sets
|vrot| (stellar rotation curve, green) and σ (stellar velocity dispersion profile,
red) are also shown for reference. See Section 5 for a rigorous definition of
these quantities.

an asymmetry caused by the presence of the warp). These excluded
points are shown in light blue in Fig. 2.

3 T H E G A L A X Y M A S S M O D E L

In order to perform a self-consistent analysis of the mass structure
of SDSS J2141 we need to combine the constraints derived from
both the lensing and kinematics data sets. The most general and
straightforward way to proceed is simply to adopt for the galaxy a
plausible total mass density distribution ρtot(x, η), where x denotes
the spatial coordinates and η is a set of parameters characterizing
the density profile, and use it to model simultaneously the various
sets of observables. The main challenge with this approach lies in
choosing a mass distribution that is realistic and flexible enough
to reproduce the data, but at the same time simple enough that
the exploration of the η parameter space remains computationally
feasible.

In keeping with local studies of both disc and elliptical galaxies
(e.g. Weijmans et al. 2008; Williams, Bureau & Cappellari 2009) we
model the mass distribution using two components: (i) a luminous
mass component whose detailed profile is obtained by deprojecting
the observed surface brightness distribution and (ii) a gNFW dark
matter halo whose profile is motivated by cosmological simulations.

Throughout the remainder of this work we will make reference to
the two following right-handed coordinate systems: (i) a cylindrical
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coordinate system (R, ϕ, z) with the z-axis directed along the galaxy
rotation axis; (ii) a Cartesian coordinate system (x′, y′, z′), where the
z′-axis is directed along the line of sight and (x′, y′) denotes the plane
of the sky, with the x′-axis aligned along the galaxy projected major
axis. In both cases the origin of the axes is located in the centre of
the galaxy (which is assumed to be an axially symmetric system).
We use the first reference system to write the intrinsic galactic quan-
tities (e.g. density and potential) and the second one to express the
projected quantities (e.g. surface brightness and deflection angle).
We denote with i the galaxy inclination, i.e. the angle between the
z-axis and z′-axis (so that i = 90◦ for a system observed edge-on).

3.1 Luminous mass distribution

An ideal model for the luminous mass distribution should be flex-
ible and realistic (in particular, it should be able to reproduce the
observed surface brightness distributions when projected along the
line of sight), and analytically simple, so that the corresponding
gravitational potential is easy to calculate. This can be achieved by
making use of the MGE method, a technique originally pioneered
by Bendinelli (1991) and subsequently generalized and developed
by Monnet, Bacon & Emsellem (1992), Emsellem, Monnet &
Bacon (1994), Emsellem, Dejonghe & Bacon (1999) and Cappellari
(2002), whose formalism we follow here. In order to minimize dust
obscuration and map as closely as possible the stellar distribution,
we apply the MGE decomposition to the high-resolution K′-band
image of the SDSS J2141 surface brightness distribution.

The observed galaxy surface brightness �(x′, y′) is parametrized
as a sum of N 2D, concentric, elliptically symmetric Gaussian com-
ponents gk(x′, y′), each with luminosity Lk:

�(x ′, y ′) =
∑

k

Lk gk(x ′, y ′) , (1)

where each Gaussian function

gk(x ′, y ′) = 1

2πσ 2
k q ′

k

exp

[
− 1

2σ 2
k

(
x ′2 + y ′2

q ′
k

2

)]
(2)

is characterized by the widths σ k and q ′
kσk along the x′-axis and

y′-axis, respectively, and q ′
k is the projected axial ratio of the kth

component. The total stellar luminosity of the system is simply
given by Ltot = ∑

kLk.
In general, even assuming – as we do – that the galaxy inclination

angle i is known, the deprojection of the observed light distribution
of an axisymmetric galaxy is an intrinsically degenerate problem
unless the system is seen edge-on (Rybicki 1987). The solution,
however, can become unique when a model is specified. In the case
of the MGE parametrization, the deprojected 3D luminosity density
distribution has the simple expression

ρ(R, z) =
∑

k

Lk

(2π)3/2σ 3
k qk

exp

[
− 1

2σ 2
k

(
R2 + z2

q2
k

)]
, (3)

which is still a sum of Gaussian functions with intrinsic axial ratios
given by

q2
k = q ′

k
2 − cos2 i

sin2 i
. (4)

Since the stellar component of galaxies is oblate or spherical, most
(if not all) Gaussians will turn out to have 0 ≤ qk ≤ 1. In order
for the axial ratios of the 3D Gaussian components to be physical,
one must enforce the constraint that the projected axial ratios q ′

k are
rounder than |cos i| when fitting the profile of equation (1) to the
observed surface brightness distribution.

The luminosity density in equation (3) can be straightforwardly
converted into a mass density by multiplying each term by the stellar
mass-to-light ratio ϒk, so that the mass of each Gaussian is given
by Mk ≡ ϒkLk. However, the single Gaussian elements are simply
a mathematically convenient way to describe the light profile and
do not have a direct physical meaning individually. Therefore, since
there is little interest in studying them one by one, in this work
we assign the same global stellar mass-to-light ratio ϒ� to all the
luminous components. This simplifying assumption is equivalent to
assuming that the bulge and disc components have the same stellar
mass-to-light ratio. Note that the choice of the K′-band image as
trace of stellar light should minimize variations in mass-to-light
ratio. Future work with higher resolution data should explore further
the limitations of this assumption.

An additional advantage of the MGE approach is that we avoid
dealing with the difficult and somewhat degenerate problem of de-
composing the light profile into the separate disc and bulge con-
tributions (see e.g. van der Kruit & Searle 1981) since we have a
model that can fit very accurately the whole light distribution at
once.

The density distribution of equation (3) is a sum of components
stratified on homoeoidal surfaces; hence the corresponding gravi-
tational potential can be derived using the classic Chandrasekhar
(1969) formula, obtaining (see Emsellem et al. 1994)


(R, z) = −G

√
2

π

∑
k

Mk

σk


̃k(R, z) , (5)

where G is the gravitational constant and the dimensionless function


̃k(R, z) =
∫ 1

0

dτ√
1 − η2

kτ
2

exp

[
− τ 2

2σ 2
k

(
R2 + z2

1 − η2
kτ

2

)]
,

(6)

with η2
k ≡ 1−q2

k , can be evaluated with a single numerical integral.
The density distribution (equation 3) and its potential (equation 5)
are remarkably simple for such a flexible mass model. Even better,
the corresponding kinematic quantities, obtained by solving the
Jeans equations, also have relatively straightforward expressions
that do not involve any special functions (see Cappellari 2008, for
a rigorous derivation of the velocity moments).

3.2 Dark matter halo

CDM simulations are known to produce haloes with, on average,
universal mass density profiles (Navarro, Frenk & White 1997) that
are well fitted by a broken power-law functional form with an inner
logarithmic slope γ = 1 and a slope γ = 3 in the outer regions, i.e. at
radial distances much larger than the scale radius rs. The situation,
however, becomes far more complex when the baryons are added to
the picture and – although the detailed mechanisms are not yet fully
understood – it is widely accepted that the involved processes can
have the effect of modifying the inner slope of the dark halo density
profile (e.g. Blumenthal et al. 1986; Dekel, Devor & Hetzroni 2003;
Gnedin et al. 2004; Nipoti et al. 2004; Abadi et al. 2010). Therefore,
in order to account for a dark matter halo that can be either steeper
or shallower than a NFW dark matter halo in the inner regions, we
adopt an axisymmetric gNFW density distribution (see Zhao 1996;
Wyithe, Turner & Spergel 2001):

ρDM(m) = δc ρcrit

(m/rs)γ (1 + m/rs)3−γ
. (7)
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The SWELLS survey – IV 1077

Here, ρcrit is the critical density of the universe at the redshift of the
object in question, and m denotes the elliptical radius, i.e.

m2 ≡ R2 + z2

qh
2
, (8)

where qh indicates the 3D axial ratio of the profile (the halo is oblate
for qh < 1, spherical for qh = 1, prolate for qh > 1). Note that we
take the halo to be aligned with the stellar mass distribution, as in
Paper II.

In order to enable an easier comparison of the scale radii between
profiles having different values of γ , it is useful to introduce the
quantity r−2 ≡ (2 − γ )rs, which corresponds to the radius at which
the logarithmic density slope of the profile is −2. Clearly, r−2 = rs

only in the case of the regular NFW profile. Another useful scale
length is the ‘virial’ radius rvir, defined as the spherical radius within
which the average density is equal to 200ρcrit. The concentration
parameter of the halo is usually expressed as the ratio c = rvir/rs; an
alternative definition, adopting the radius r−2, is c−2 = rvir/r−2.

The characteristic halo density δc that sets the normalization of
ρDM in the centre is then expressed (following e.g. Dutton et al.
2005)1 as a function of both the concentration and the slope:

δc = 200

3

c3

ζ (c, γ, 1)
, (9)

where we have defined the function

ζ (c, γ, qh) =
∫ c

0

τ 2−γ (1 + τ )γ−3√
1 − (

1 − q2
h

)
τ 2/c2

dτ . (10)

The mass distribution given by equation (7) is completely speci-
fied when the four independent parameters γ , qh, rs and c are given.
In this work, we choose to reparametrize the halo using the virial
velocity vvir, i.e. the circular velocity at the virial radius, in place
of the scale radius, since vvir has a very intuitive physical interpre-
tation and facilitates the comparison with theoretical work, where
this quantity is frequently employed (see e.g. Macciò, Dutton & van
den Bosch 2008; Dutton et al. 2011a). If the velocity is expressed
in km s−1 and the radii in kpc, then one can show (cf. Dutton et al.
2005) that vvir is related to the virial radius by the formula

(
vvir

rvir

)2

= h2 ζ (c, γ, qh)

ζ (c, γ, 1)
, (11)

where h = H/100 km s−1 Mpc−1 and H denotes the value of the
Hubble constant at the redshift of the object.

It is convenient to perform an MGE of the axisymmetric gNFW
profile in order to simplify considerably both the calculation of
the lensing angle and the solving of the Jeans equations (cf. e.g.
Williams et al. 2009, where a MGE decomposition of the NFW
halo is performed). We find that around eight Gaussian components
are typically enough to provide an excellent fit to both the ρDM

distribution and the lensing deflection field (typically within 1–
3 per cent), ensuring that the adoption of this approximation does
not change our inferences. In this case, the total potential is still
obtained from equation (5) by extending the sum to include also the
NDM Gaussian elements that describe the dark halo component.

1 Note that there is a typographical error in equation (7) of Dutton et al.
(2005): inside the integral the numerator should read y2−α[1 + (2 − α)y]α−3.

4 MO D E L L I N G T H E G R AV I TAT I O NA L
LENSI NG

Given the observed surface brightness distribution of the lensed
images and a mass model for the deflector, we recover the un-
lensed surface brightness distribution of the background object (the
‘source’ object) by making use of the pixellated source reconstruc-
tion method, which takes into account the effects of point spread
function (PSF) blurring and regularization (see e.g. Warren & Dye
2003; Koopmans 2005; Brewer & Lewis 2006; Suyu et al. 2006).
Our implementation of this method is described in detail in Barnabè
& Koopmans (2007) and is included in the CAULDRON code that has
been employed in the combined lensing and dynamics analysis of
the SLACS early-type galaxies for which 2D kinematic maps are
available (see Czoske et al. 2008, 2012; Barnabè et al. 2009a,b,
2011).

This approach consists in casting back, pixel by pixel, through the
lensing equation, the lensed image grid on to the source image grid.
The results of this procedure are encoded in the lensing operator A,
which allows one to express the mapping of the background source
s into the lensed image d as a linear problem, i.e. As = d. This set
of linear equations is then solved for s by means of very efficient
standard techniques.

All that is needed to calculate the lensing operator is the de-
flection angle α, which is obtained from the surface mass density
distribution of the lens galaxy (see e.g. Schneider, Kochanek &
Wambsganss 2006). Therefore, the matrix A depends both on the
physical parameters η characterizing the density profile and on the
geometry of the system, i.e. the inclination i and the angular diam-
eter distances between the observer and the source (Ds), between
the observer and the lens (Dd), and between the lens and the source
(Dds).

For many 3D density profiles of astrophysical interest the deflec-
tion angle is very cumbersome to compute (cf. e.g. the catalogue
of Keeton 2001). This has contributed to the widespread adoption
of those few profiles, such as the isothermal ellipsoid, for which
analytical expressions of α are available (see Kormann, Schneider
& Bartelmann 1994; Keeton & Kochanek 1998). Remarkably, the
lensing deflection angle corresponding to the density distribution of
equation (3) is very straightforward to calculate, involving a single
quadrature and no special functions:

αx′ (x ′, y ′) = 1

πD2
d�crit

∫ 1

0
τ dτ

∑
k

Mk

σk

x̃ ′√
1 − η2

kτ
2

× exp

[
− τ 2

2

(
x̃ ′2 + ỹ ′2

1 − η2
kτ

2

)]
, (12)

αy′ (x ′, y ′) = 1

πD2
d�crit

∫ 1

0
τ dτ

∑
k

Mk

σk

ỹ ′(
1 − η2

kτ
2
)3/2

× exp

[
− τ 2

2

(
x̃ ′2 + ỹ ′2

1 − η2
kτ

2

)]
, (13)

where both the deflection angle and the widths σ k are expressed
in radians; x̃ ′ ≡ x ′/σk and ỹ ′ ≡ y ′/σk are the sky coordinate
(normalized to σ k) with respect to the lens centre. As before, η2

k =
(1 − q2

k ). The critical surface density

�crit = c2

4πG

Ds

DdsDd
(14)

is the characteristic surface density used in gravitational lensing
(e.g. Treu 2010).
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5 MO D E L L I N G T H E K I N E M AT I C S

5.1 Predicting the observed second velocity moments
with the anisotropic Jeans equations

Let us consider a steady-state axially symmetric stellar system char-
acterized by a distribution function (DF) f (x, v), where the posi-
tions x and the velocities v are the phase-space coordinates, and
subject to the influence of a total gravitational potential 
tot(R,
z). While the typical observational data sets do not allow one, in
general, to recover the full 6D DF, it is possible to gain valuable
information on the global dynamical structure of the system by not-
ing that its velocity moments must satisfy the two Jeans equations
(Binney & Tremaine 2008)

∂(ρv2
z )

∂z
+ 1

R

∂(RρvRvz)

∂R
= −ρ

∂
tot

∂z
(15)

∂(ρv2
R)

∂R
+ ∂(ρvRvz)

∂z
= −ρ

∂
tot

∂R
+ ρ

v2
ϕ − v2

R

R
. (16)

Here, ρ(R, z) ≡ ∫
f d3v denotes the 3D density distribution of

the stellar system, and the bar indicates a phase-space average of
the quantity of interest, i.e.

vivj ≡ 1

ρ

∫
vivjf d3v. (17)

The system is not required to be self-gravitating and therefore in
equations (15) and (16) ρ might well be the density distribution ρ tr

of a tracer stellar component described by a DF f tr and subject to
an external potential. Moreover, if other collisionless components
(each one defined by its own DF) are present, each one will obey
its own set of Jeans equations within the same total potential 
tot.

In our dynamical analysis of late-type galaxies, we adopt an
axisymmetric total potential 
tot = 
� + 
DM, where the two
components represent the potentials of the luminous distribution
and dark matter halo, respectively. We then write down and solve the
Jeans equations, using the stellar density distribution ρ� associated
with the corresponding potential via the Poisson equation, in order
to obtain the intrinsic velocity moments.2 These are then projected
along the line of sight and – after taking into account the effect
of instrumental PSF and aperture integration – compared with the
corresponding observational quantities.

Of course, even when the potential and the density distributions
are given, the two equations (15) and (16) still depend on the four
unknown functions v2

R , v2
ϕ , v2

z and vRvz, and therefore additional
assumptions are needed in order to determine a unique solution for
the Jeans equations. This is usually achieved by assigning the ori-
entation and the shape of the intersection of the velocity dispersion
ellipsoid with the meridional plane (R, z) at each point.

Observations of the Milky Way and of nearby disc galaxies show
that the velocity dispersion ellipsoid is more flattened in the vertical
direction than in the radial one,3 i.e. v2

z < v2
R (see e.g. Wielen 1977;

2 Because of the collisionless nature of dark matter, one could write an
analogous set of equations also for the halo component. However, since
the corresponding velocity moments cannot be observed, this would be of
no use in the present context of comparing the model predictions with the
observed data sets.
3 If the assumption of a steady-state axisymmetric system holds, this implies
that the disc DF also depends on a third, non-classical, integral of motion
I3, in addition to the two classical integrals, namely the energy E and the
angular momentum Jz along the rotation axis.

Gerssen, Kuijken & Merrifield 1997, 2000; van der Kruit & de Grijs
1999; Shapiro, Gerssen & van der Marel 2003; Ciardullo et al. 2004;
Noordermeer, Merrifield & Aragón-Salamanca 2008).

Cappellari (2008) introduced a simple and effective way (referred
to as anisotropic Jeans models) to provide a closure for the Jeans
equations that manage to reproduce this important feature. The two
assumptions of this phenomenological model are the following:
(i) the velocity dispersion ellipsoid is aligned with the cylindrical
coordinate system (so that the mixed terms vRvz are everywhere
zero) and (ii) the anisotropy in the meridional plane is constant, i.e.
v2

R = bv2
z , with the anisotropy parameter b ≥ 0. The meridional

plane anisotropy is usually expressed in the literature using the
parameter βz, such that

βz = 1 − v2
z

v2
R

= 1 − 1

b
. (18)

In real galaxies, the shape and the orientation of the velocity dis-
persion ellipsoid are in general a non-trivial function of the position
on the meridional plane. However, the assumption of cylindrical
alignment is quite accurate for fast-rotating galaxies and disc sys-
tems in general, in particular along the minor axis and, more cru-
cially, in the vicinity of the equatorial plane, where the density is
highest. In fact, Jeans models constructed with this simple prescrip-
tion for the anisotropy have been shown to reproduce remarkably
well the observed kinematic moments of fast rotators and spirals
(Scott et al. 2009; Williams et al. 2009).

With these assumptions, the Jeans equations (15) and (16) be-
come

∂(ρv2
z )

∂z
= −ρ

∂
tot

∂z
, (19)

b
∂(ρv2

z )

∂R
= −ρ

∂
tot

∂R
+ ρ

v2
ϕ − bv2

z

R
. (20)

From the equations above, and imposing the intuitive constraint
that the vertical pressure ρv2

z = 0 for z → ∞, one obtains the
following expressions for the intrinsic second velocity moments
along the coordinate directions:

v2
z = 1

ρ

∫ ∞

z

ρ
∂
tot

∂z′ dz′, (21)

v2
ϕ = b

ρ
R

∂ρv2
z

∂R
+ bv2

z + R
∂
tot

∂R
. (22)

These intrinsic quantities are then integrated along the line of sight
to obtain the projected second velocity moment v2

los (whose square
root is usually indicated as μ2) which can be directly compared to
the stellar kinematics observables. The projected velocity moments
for the case of MGE parametrization are calculated in Cappellari
(2008). The observational counterpart of the model quantity μ2 is
the rms velocity vrms ≡

√
v2

rot + σ 2, where vrot and σ indicate the
line-of-sight projected stellar rotation velocity and velocity disper-
sion, respectively.

We recall that, given a potential and a density distribution, the
Jeans equations impose a condition for the equilibrium on the second
velocity moments, but they provide no prescription on how to sep-
arate these moments into the contributions of random and ordered
motions. Since no net radial or vertical motions are considered, and
thus σ 2

R = v2
R and σ 2

z = v2
z , here this issue would only be relevant

for the splitting of the azimuthal component into the streaming mo-
tion vϕ and the velocity dispersion σϕ , i.e. v2

ϕ = vϕ
2 + σ 2

ϕ , which is
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The SWELLS survey – IV 1079

usually tackled by adopting ad hoc assumptions such as the Satoh
(1980) decomposition. In this work, however, we avoid making any
additional assumptions in order to model vϕ separately, and we only
model the second velocity moments as described above.

5.2 Predicting the observed gas circular velocity

In order to model the rotation curve of the Hα gas, we calculate the
circular velocity profile, vc(R), of a test particle of negligible mass
in a circular orbit in the equatorial plane of the galaxy.

The circular velocity, as it is clear from its definition, i.e. v2
c (R) =

R (∂
tot/∂R)|z=0, is uniquely determined by the total gravitational
potential of the galaxy. In general, vc differs from the stellar rotation
velocity vϕ (often referred to as streaming motion) which is usually
lower due to the effect of the stellar velocity dispersion, which acts
as a pressure term (see e.g. Binney & Tremaine 2008).

The (squared) circular velocity profile that corresponds to the
MGE mass model described in Section 3 is readily calculated from
equations (5)–(6) and has the following expression:

v2
c (R) = 4πGR2

∫ 1

0
τ 2dτ

∑
k

qk ρ0k√
1 − η2

kτ
2

exp

(
− τ 2

2σ 2
k

R2

)
,

(23)

where again η2
k = (1 − q2

k ) and the constant ρ0k ≡ ρk(0, 0) is the
central value of the mass density distribution of the kth Gaussian
element.

In order to compare the predicted rotation curve vc(R) of equa-
tion (23) with the observations, we also take into account the com-
bined effects of inclination, PSF blurring and finite slit width, col-
lectively referred to as beam smearing. Since the exact distribution
of the Hα gaseous component is not known from the observations,
we approximate it using the available K′-band light profile instead,
which is more accurate than using an exponential disc model. Addi-
tionally, in keeping with Paper II, we have conservatively excluded
from the fit two regions of the rotation curve: (i) the inner 2 arcsec,
a region where the Hα distribution is probably asymmetric, due to
the effect of extinction and (ii) the outermost three points of the
western side of the rotation curve, which are affected by a spurious
decrease of the velocity caused by the warp.

6 BAY E S I A N IN F E R E N C E A N D
U N C E RTA I N T I E S

In order to derive rigorous constraints on the parameters that char-
acterize the adopted model, we conduct our analysis within the
standard framework of Bayesian statistics (see e.g. MacKay 2003
and Sivia & Skilling 2006, for an extensive treatment of this sub-
ject).

Let us denote the combined data sets as d and the considered hy-
pothesis asH(θ). In our case, for instance,H includes the model that
we have adopted to describe the mass distribution and dynamics of
the galaxy under study (Sections 3–5), and also all the assumptions
we make about the uncertainties on the data, instrument response
functions and any prior knowledge of the situation we might want
to include. The non-linear parameters θ may include, in general,
not only the physical parameters η defining the total mass density
distribution, but also the parameters that characterize the dynamics
(e.g. anisotropy) and the geometry (e.g. inclination) of the system.

From Bayes theorem, the posterior probability distribution func-
tion (PDF) for the set of parameters θ is given by

Pr (θ | d,H) = Pr (d | θ ,H) Pr (θ |H)

Pr (d |H)
, (24)

where Pr (d | θ ,H) is the likelihood, Pr (θ |H) is the prior and
Pr (d |H), i.e. the factor required to normalize the posterior over
θ , is known as the Bayesian evidence, which is used in comparing
different model forms. When modelling the lensing and kinematic
data we do not keep track of the value of the evidence, but do make
use of it in Section 7.4.

The set of parameters θMAP for which the posterior is maximized
identifies the maximum a posteriori (MAP) model. The MAP model
can be interpreted as a ‘best model’ of sorts, in the sense that it repre-
sents the combination of parameters that is found to best reproduce
the data given our assumptions. We adopt it as our reference model
for the times when we need to show our best estimates of the pre-
dicted observables (lensed image, rotation curve, velocity moments)
and the reconstructed background lensed source.

The primary quantities of interest are the marginalized posterior
PDFs for individual parameters θ i obtained by integrating the joint
posterior PDF over all the other parameters. These integrals can be
performed most readily if we characterize the joint posterior by a
set of sample parameter values drawn from it. The marginalized
distributions are then readily approximated by histograms of these
samples. When a more compact representation is required, we quote
parameter constraints as the median values of these 1D histograms,
θmed, and quantify our uncertainty with their 68 per cent credible
intervals (calculated by taking the 16th and 84th percentiles).

The model that we employ for the analysis of SDSS J2141 has
six free parameters, i.e. parameters with uninformative priors which
are allowed to vary and for which the posterior exploration is per-
formed. These are the following: the virial velocity vvir, the inner
logarithmic slope γ , the concentration c−2 and the 3D axial ratio
qh which describe the gNFW dark matter halo (Section 3.2); the
global stellar mass-to-light ratio ϒ� of the luminous component
(Section 3.1), which is more readily interpreted when expressed
in terms of the total stellar mass M� ≡ ϒ�Ltot; and the meridional
plane anisotropy parameter b (Section 5.1). In analogy with Paper
II, we adopt a broad Gaussian prior for vvir centred on 255 km s−1

with a width of 45 km s−1. This corresponds to the prior adopted in
Paper II for the virial velocity of their non-singular isothermal halo,
and is equivalent to assuming that the scale radius is not so large that
the virial velocity is dramatically larger than the observed rotation
velocity. We also adopt, as in Paper II, a lognormal prior centred on
qh = 1 (spherical) for the axial ratio, which allows for both oblate
and prolate haloes. We let c−2 vary on a wide uniform prior from 0
to 50 to represent our ignorance of the halo concentration. The inner
logarithmic slope γ is allowed to vary between 0 (flat core) and 2
(isothermal). We note that vvir is allowed to go to zero, so that we are
also including in our analysis the case of a disc galaxy with no dark
matter halo, fully described by a self-gravitating stellar mass dis-
tribution. By letting the total stellar mass vary (with uniform prior)
between 0 and 5 × 1011 M�, we allow for a wide range of con-
tributions of the luminous components to the total mass, including
the limiting case in which the galaxy is fully dark matter dominated
and the stars are only a tracer with negligible mass. Finally, the
anisotropy parameter can vary uniformly from b = 0, indicating a
velocity dispersion ellipsoid without any radial component, to b =
5, for which the velocity dispersion ellipsoid is very elongated along
the radial direction: this interval is wide enough to include all the
values of meridional plane anisotropy observed in real disc galaxies
(see Section 7.5). The model parameters, together with the adopted
priors, are summarized in Table 1. A full description of the model
also includes a number of additional parameters that do not rep-
resent physical characteristics of the system (i.e. the line-of-sight
inclination, the lens centre, the regularization level, the weights,
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Table 1. Summary of the adopted priors and of the posteriors inferred from the combined
analysis for the model parameters.

Parameter Description Prior Posterior

vvir (km s−1) Dark halo virial velocity N (255, 45) 242+44
−39

γ Dark halo inner logarithmic slope U(0, 2) 0.82+0.65
−0.54

c−2 Dark halo concentration U(0, 50) 7.7+4.2
−2.5

qh Dark halo 3D axial ratio LN (1, 0.3) 0.75+0.27
−0.16

M�( × 1011 M�) Stellar mass U(0, 5) 1.32+0.16
−0.25

b Orbital anisotropy parameter: σ 2
R/σ 2

z U(0, 5) 1.77+0.30
−0.29

Note. In the prior column, U(a, b) denotes a uniform distribution over the open interval (a,
b); N (a, b) denotes a normal distribution, with a being the central value and b the standard
deviation; LN (a, b) denotes a lognormal distribution, with a being the central value for the
variable and b the standard deviation for the log of the variable. In the posterior column,
we list, for each parameter, the median value of the corresponding marginalized posterior
PDF and the uncertainty quantified by taking the 68 per cent credible interval (i.e. the 16th
and 84th percentiles).

widths and flattenings of the individual MGE Gaussians): these
are treated as nuisance parameters and kept fixed or marginalized
over.

For the likelihood function we follow the standard approach of
assuming Gaussian errors on the data points (see e.g. Brewer &
Lewis 2006; Suyu et al. 2006; Marshall et al. 2007). In this case,
the joint likelihood can be written simply as

Pr (d | θ ,H) ∝ exp

{
−1

2

N�∑
i=1

[
� obs

i − �mod
i (θ)

]2

σ 2
�, i

−1

2

Nμ2∑
i=1

[
μ obs

2, i − μmod
2, i (θ )

]2

σ 2
μ2, i

− 1

2

Nvc∑
i=1

[
v obs

c, i − v mod
c, i (θ )

]2

σ 2
vc, i

⎫⎬
⎭ ,

(25)
where the three terms inside the exponential represent the familiar
χ2 misfit functions for the separate contributions of gravitational
lensing, stellar kinematics and gas kinematics, respectively. We
indicate as � obs

i the N� data points constituting the lensing data
set, i.e. the pixel values in the galaxy-subtracted observed lensed
image (see top-right panel of Fig. 1), each characterized by an un-
certainty σ �, i. We denote as �mod

i the corresponding pixel values
of the model-predicted image, which are determined by the spe-
cific choice of model parameters θ [for example, the bottom-left
panel of Fig. 1 shows �mod

i (θMAP), i.e. the model-predicted image
in the case of the MAP model]. An analogous notation (i.e. ob-
served values, model-predicted values, uncertainties on the data
points) applies for the velocity moment μ2 in the case of the stel-
lar kinematics and for the circular velocity vc in the case of gas
kinematics.

The computationally expensive task of exploring and sampling
the joint posterior distribution is accomplished by making use of
the very efficient and robust MULTINEST algorithm (Feroz & Hobson
2008; Feroz, Hobson & Bridges 2009), which implements the nested
sampling Monte Carlo technique (Skilling 2004; Sivia & Skilling
2006), and can provide reliable posterior inferences even in presence
of multimodal and degenerate multivariate distributions. For the
analysis of SDSS J2141, we have launched MULTINEST with 2000
live points (the live or active points are the initial samples, drawn
from the prior distribution, from which the posterior exploration is
started). The large number of live points adopted for this study (cf.
e.g. the MULTINEST analysis in Barnabè et al. 2011) has allowed us
not only to produce very detailed posterior distributions, but also
to gauge the minimum number of live points (which is found to

be ∼200) needed to obtain reliable posterior PDFs, which will be
very useful in reducing the computational load in future analyses of
further SWELLS systems.

7 R ESULTS AND DI SCUSSI ON

In this section we present and discuss the results of our analysis
of the disc galaxy SDSS J2141, combining the constraints from both
the gravitational lensing and the kinematic data sets as described in
the previous sections.

7.1 Inferences on the galaxy model parameters

As discussed in Section 6, the inferences on the model param-
eters obtained from our analysis are expressed in the form of a
multivariate posterior PDF. We consider six free parameters: the
virial velocity vvir, inner logarithmic slope γ , concentration c−2

and 3D axial ratio qh of the gNFW dark matter halo, the total stel-
lar mass M� and the meridional plane orbital anisotropy ratio b.
Since visualizing the full 6D surface is challenging, we present
the inferences in the familiar form of ‘corner plots’ that show
all possible 1D and 2D marginalized posterior PDFs for the six
model parameters. The inferences obtained when using just one
single data set are presented in Figs 3 (gravitational lensing only)
and 4 (kinematics only), while Fig. 5 shows the results for the
combined lensing and kinematics data sets. In each plot, the three
contours indicate the regions containing, respectively, 68, 95 and
99.7 per cent of the probability, i.e. they represent the analogue of
the 1σ , 2σ and 3σ contours of a Gaussian distribution. The me-
dian value and the corresponding uncertainties (expressed as 16th
and 84th percentiles) for each individual parameter are listed in
Table 1.

The constraints provided by kinematics alone are in general
slightly better than the constraints obtained with a pure gravita-
tional lensing analysis, in particular for the concentration and the
stellar mass; obviously, the anisotropy parameter b is completely
unconstrained in the lensing analysis, and thus, in this case, the pos-
terior is nothing else than the input uniform prior. The inferences on
the remaining parameters have uncertainties of similar magnitude
in the two cases, but the marginalized posterior PDFs have different
shapes (note, in particular, the profile for the marginalized PDF of
the halo axial ratio in the two cases), which makes it possible to
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The SWELLS survey – IV 1081

Figure 3. Marginalized 2D (contour plots) and 1D (histograms) posterior PDFs for the galaxy model parameters using constraints from the gravitational
lensing data set only. The three contours indicate the regions containing, respectively, 68, 95 and 99.7 per cent of the probability.

tighten the inferences when lensing and kinematics data are con-
sidered simultaneously. The effectiveness of the combined analysis
can be seen in Fig. 5: in particular, we can place tight constraints on
M� by clipping both the low-mass and high-mass tails, and we also
improve significantly our inferences on the dark halo parameters
qh and γ , for which we weed out the higher values. The meaning
and implications of the constraints on the model parameters are
discussed below in Sections 7.2–7.5.

The high-probability models drawn from the posterior PDF of
the combined analysis, and in particular the MAP model, reproduce
both the lensing and the kinematic observables very accurately
(Figs 1 and 2, respectively). Similarly to what was found in Paper II,
the most probable lensing models predict a faint counter-image
whose presence is consistent with the noise level. For the kinematics,
we note that the predicted gas rotation curve matches quite well also

the data points within the inner 2 arcsec, which were conservatively
excluded from the fit.

7.2 Mass budget: baryons and dark matter

A very intuitive way to visualize the galaxy mass budget as a func-
tion of radius that is inferred from the combined analysis is provided
by Fig. 6, where we show the circular velocity profile obtained from
the posterior PDF, decomposed into the baryonic and dark matter
components. The solid lines indicate the median values from the
posterior PDF, while the shaded regions represent the 68 per cent
confidence intervals. The constraints on the total circular velocity
vtot are extremely tight, whereas there are larger uncertainties on the
contributions given by the separate components. Despite this, it is
clear that the baryonic matter is dominant all over the entire region
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1082 M. Barnabè et al.

Figure 4. Marginalized 2D (contour plots) and 1D (histograms) posterior PDFs for the galaxy model parameters using constraints from the kinematics data
set only. The three contours indicate the regions containing, respectively, 68, 95 and 99.7 per cent of the probability.

for which we have data, with the dark matter component becoming
progressively more important as we move outwards in radius.

Traditionally, in studies of disc galaxies, the characteristic radius
at which one measures the dark matter fraction f DM ≡ MDM/Mtot is
2.2 times the disc scale length Rd, which corresponds to the radius
at which the circular speed peaks for a razor-thin exponential disc
(see e.g. Bershady et al. 2010, and references therein). In the case of
SDSS J2141, we determine fDM(2.2Rd) = 0.28+0.15

−0.10 by integrating
the mass within a spherical radius r = 2.2Rd. We note that this
dark matter fraction was inferred from gravitational data alone,
and is independent of the stellar populations in the galaxy. The
marginalized posterior PDF for this quantity is shown in Fig. 7: it
is clear that the distribution peaks at around f DM � 0.3; dark matter
dominated models (i.e. f DM > 0.5), however, are still possible,
albeit with a low probability of about 9 per cent. Models without

dark matter, on the other hand, are ruled out at more than the 3σ

level, i.e. the probability for f DM < 0.05 is less than 0.3 per cent.
The Paper II analysis of this same galaxy – carried out using a less
flexible mass model and without including the stellar kinematic
constraints – found (at lower precision) a higher contribution of
dark matter at 2.2Rd, i.e. fDM = 0.55+0.20

−0.15, which is, however,
still consistent within 1σ with the result that we determine here.
Trott et al. (2010) and Suyu et al. (2012), by applying a combined
lensing and dynamics analysis on two different disc galaxies, obtain
a fractional amount of dark matter close to 45 ± 10 per cent, which
is slightly higher than (but not inconsistent with) the f DM that we
derive from the present analysis. On the other hand, van de Ven et al.
(2010), by conducting a combined lensing and dynamics study of
the same early-type disc galaxy studied by Trott et al. (2010), and
adopting a Kroupa (2001) IMF, find that the upper limit for f DM
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Figure 5. Marginalized 2D (contour plots) and 1D (histograms) posterior PDFs for the galaxy model parameters using the combined constraints from both
lensing and kinematics. The three contours indicate the regions containing, respectively, 68, 95 and 99.7 per cent of the probability.

is only ≈0.20. Interestingly, the value of f DM that we obtain in
this analysis is similar to the typical average dark matter fraction of
about 30 per cent determined for massive early-type galaxies within
one effective radius based on lensing and dynamical analysis (e.g.
Treu & Koopmans 2004; Auger et al. 2010a; Treu et al. 2010;
Spiniello et al. 2011), or by assuming maximal stellar component
(e.g. Gerhard et al. 2001; Cappellari et al. 2006; Barnabè et al.
2010, 2011). However, one should keep in mind that f DM has been
observed to vary quite significantly between individual systems.

This analysis also enables us to test whether the ‘maximum disc’
hypothesis (van Albada & Sancisi 1986), frequently adopted in
studies of late-type galaxies (e.g. Bell & de Jong 2001), holds for
the object examined here. We follow the definition of maximum disc
introduced by Sackett (1997), i.e. vdisc(2.2Rd)/vtot(2.2Rd) = 0.85 ±
0.10, substituting the circular velocity of the disc vdisc with the more
relevant circular velocity of the entire baryonic component, vbar. We

find that vbar(2.2Rd)/vtot(2.2Rd) = 0.87+0.05
−0.09, which corresponds to

a maximal disc. From the posterior PDF for this ratio, the probability
that the SDSS J2141 disc is submaximal is about 10 per cent.

This result would make SDSS J2141 something of an outlier when
compared with a sample, recently studied using dynamical methods,
of 30 local disc galaxies (Bershady et al. 2011; Martinsson 2011).
These authors find that, although the ratio vdisc(2.2Rd)/vtot(2.2Rd)
increases with the maximum rotation speed of the galaxy, even the
most massive systems with vdisc(2.2Rd) � 250 km s−1 are submax-
imal on average. We note, however, that the existence of individual
massive galaxies consistent with ‘maximality’ is not ruled out in
their study (see in fig. 2 of Bershady et al. 2011 the outlier and
the error bars for some of the highest rotation velocity systems). In
addition, it is important to keep in mind that both our method and
that of Bershady et al. (2011) inevitably rely on different assump-
tions: in our case, for example, a common mass-to-light ratio for
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Figure 6. Circular velocity profile inferred from the combined lensing and dynamics analysis. The total circular velocity is shown in black, while the baryonic
and dark matter components are plotted in blue and red, respectively. For each component, the solid line represents the median, while the shaded region
encloses 68 per cent of the posterior PDF. The two vertical dashed lines mark, for reference, the location of the Einstein radius RE (left) and of 2.2Rd (right),
where Rd = 3.58 kpc is the disc scale length of the galaxy.

Figure 7. Dark matter fraction enclosed within the spherical radius r = 2.2
disc scale lengths, inferred from the combined lensing and dynamics analy-
sis. The median and uncertainty (corresponding to 16th and 84th percentiles)
are fDM = 0.28+0.15

−0.10.

bulge and disc, and in their case assumptions necessary to compare
edge-on and face-on galaxies. In addition, the methods obtain their
information from different parts of the mass distribution, with our
method being more sensitive to the inner regions, owing to the lens-
ing and stellar velocity dispersion constraints. We plan to perform a
more detailed comparison of the two results once data and models
for the full SWELLS sample will be available.

7.3 Constraints on the dark matter halo: shape and profile

Pure dark matter N-body simulations find that dark haloes generally
have triaxial shapes, with a preference for prolateness, particularly
in the inner regions (e.g. Jing & Suto 2002; Allgood et al. 2006; Bett
et al. 2007; Macciò et al. 2008). Recent numerical work (see e.g.
Abadi et al. 2010; Tissera et al. 2010) has shown that including the
contribution of the baryons has the effect of modifying the overall
profile of the dark halo, which flattens to a more axisymmetric and
oblate shape, with an average axial ratio of the order of 0.85–0.95,
largely constant with radius. In our study of SDSS J2141, we infer
from the combined analysis that the dark halo is moderately oblate,
with an axial ratio qh = 0.75+0.27

−0.16. Significantly prolate haloes with
qh > 1.25 are strongly disfavoured (i.e. with less than 5 per cent
probability). This is in good agreement with the numerical results
on baryon-affected haloes, although the median value is slightly
flatter than the typical qh obtained in the simulations. The axial
ratio obtained for SDSS J2141 in Paper II (using a less flexible NIE
dark halo model which does not allow for a variable inner slope), i.e.
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qh = 0.91+0.15
−0.13, was closer to spherical but still consistent, within the

68 per cent uncertainty, with the more accurate analysis conducted
here. In contrast, in the only other joint lensing and kinematics study
of a disc galaxy that adopts a non-spherical halo model, Suyu et al.
(2012) find a much more flattened dark matter distribution, with
qh = 0.33. These authors adopt a simpler luminous mass model
than the one considered here (i.e. a razor-thin exponential disc and
a point mass bulge) and do not have access to stellar kinematics
data.

Including the inner slope γ as a free parameter in the dark halo
mass density model (see Section 3.2), rather than just adopting a
fixed isothermal or NFW profile (as done in previous studies; cf.
Paper II and Suyu et al. 2012; but see also Trott et al. 2010, where
a spherical gNFW halo is used), is important since it allows one
to account for possible baryon-induced effects, such as adiabatic
contraction, that can modify the steepness of the density distribution
in the galaxy central regions. The data set at hand, unfortunately,
does not permit us to place a strong constraint on the inner slope: we
obtain γ = 0.82+0.65

−0.54, approximately equiprobable over the range
0–1.5, and perfectly consistent with an unmodified NFW profile.
The probability that the halo has an inner slope 1.5 ≤ γ < 2 is
14 per cent. We are able to conclude, however, that very steep
profiles are disfavoured: slopes 1.7 ≤ γ < 2 have only a 3.5 per cent
probability, whereas from the adopted uniform prior U(0, 2) (see
Table 1) one would predict 15 per cent over the same interval.

We infer a halo concentration parameter c−2 = 7.7+4.2
−2.5, with

a low-probability tail for high concentrations (the 95th and 98th
percentiles fall at c−2 � 17 and �30, respectively). The inferred
virial velocity is vvir = 242+44

−39. From these parameters one can
derive the posterior PDFs for all other useful quantities char-
acterizing the gNFW halo, such as the generalized scale radius
r−2 = 41+27

−19 kpc, the virial radius rvir = 315+57
−53 kpc and the virial

mass log10(Mvir/M�) = 12.48+0.28
−0.27.

Fig. 8 shows a comparison between the dark matter concentration
and the virial velocity from our lensing and dynamics analysis of
SDSS J2141 (contours), with the predictions from N-body simula-
tions in a 5-year Wilkinson Microwave Anisotropy Probe (WMAP5)
cosmology (Macciò et al. 2008). The uncertainty on our inferred
dark matter concentration is quite broad �0.2 dex, but is never-
theless in very good agreement with the simplest predictions from
�CDM (i.e. assuming no contraction or expansion of the dark mat-
ter in response to galaxy formation).

7.4 Constraints on the stellar IMF

The total stellar mass inferred from the combined lensing and dy-
namics analysis is log10(M�/M�) = 11.12+0.05

−0.09. This value is very
well constrained and represents a significant improvement over the
M� determination of Paper II by cutting the low-mass tail of the
posterior PDF of about 0.3 dex.

In order to draw conclusions on the galaxy IMF, we need to
compare the stellar mass derived from the joint analysis with the
stellar masses that are inferred from SPS models when assuming
either a Chabrier (2003) IMF or a Salpeter (1955) IMF. The SPS
analysis is performed by applying the Auger et al. (2009) code on
the multiband photometric data set of SDSS J2141, as described
in Paper II. However, we note that so far we have neglected the
contribution of the cold gas: if such a component is present, the mass
M� derived above from the combined analysis actually represents
the total baryonic mass. Therefore, in order to obtain a posterior
PDF for the stellar mass that can be properly compared with the
predictions from the SPS models, we need to subtract the cold

Figure 8. Dark matter concentration c−2 ≡ rvir/r−2 versus dark matter
virial velocity vvir. The shaded region shows the prediction (with 1σ and 2σ

scatter) from N-body simulations in a WMAP5 �CDM cosmology (Macciò
et al. 2008). The contours enclose 68 and 95 per cent of the posterior
probability from the combined lensing and dynamics analysis. The black
dot shows the median of the posterior distribution.

gas fraction, which in disc galaxies (with stellar masses of M� �
1011 M�) accounts for about 20 ± 10 per cent of the baryonic mass
(see e.g. Dutton & van den Bosch 2009). Under the assumption
that the cold gas is distributed approximately like the stars, for
each sample in the posterior PDF of M� we draw a random gas
fraction f gas ∈ [0, 1] from a Gaussian distribution centred on 0.2
with a standard deviation of 0.1, and we calculate the quantity
M�(1 − f gas). The gas-subtracted stellar mass derived in this way
is log10(M�/M�) = 11.01+0.08

−0.11, about 0.1 dex lower than the value
obtained above by ignoring the cold gas contribution. This provides
a robust lower bound to the stellar mass function. In the future, it will
be useful to refine these mass estimates by including high-resolution
constraints on the gas fraction from Atacama Large Millimeter
Array (ALMA) observations.

The posterior PDF for the inferred stellar mass (both with and
without cold gas) is presented in Fig. 9, and compared with the
distributions obtained for Chabrier and Salpeter IMFs. It is clear,
just by a visual inspection of this figure, that our results support
a Chabrier-like IMF over a Salpeter one. This preference can be
quantified in a rigorous way by calculating the Bayes factor, i.e. the
evidence ratio between the two models:

BCS =
∫ L(M�) Pr (M� |HC) dM�∫ L(M�) Pr (M� |HS) dM�

, (26)

where in our case the likelihood L(M�) is the posterior PDF for the
inferred stellar mass, while the priors Pr (M� |HC) and Pr (M� |HS)
are given by the posterior PDFs obtained from SPS models in the
cases of Chabrier and Salpeter IMFs, respectively. The calculated
Bayes factor is BCS = 5.7, which corresponds to substantial evi-
dence in favour of a Chabrier IMF with respect to a Salpeter IMF
(see e.g. Kass & Raftery 1995, and references therein). In other
words, if these are the only two possible models, this value of BCS

means that there is a 85 per cent probability that the Chabrier model
is the true one.
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Figure 9. Comparison of the stellar mass inferred from the combined lensing and dynamics analysis (black) with the stellar mass determined from photometry
and SPS models, assuming a Chabrier IMF (blue) or a Salpeter IMF (red). The grey shaded histogram shows the posterior PDF for the inferred stellar mass
when a 20 ± 10 per cent contribution in mass from cold gas in included. In the latter case, the Bayes factor in favour of a Chabrier IMF with respect to the
Salpeter IMF is 5.7, corresponding to Chabrier being preferred at 85 per cent.

This result corroborates the findings of Paper II and is in agree-
ment with the works of, for example, Bell & de Jong (2001), Kassin,
de Jong & Weiner (2006) and van de Ven et al. (2010), which dis-
favour a Salpeter IMF for disc galaxies, preferring instead IMFs
that predict lower stellar masses, such as Chabrier or Kroupa (2001)
IMF. Low-mass, fast-rotating early-type galaxies are also found to
be often inconsistent with a Salpeter IMF (e.g. Cappellari et al. 2006;
Auger et al. 2010b; Barnabè et al. 2010). On the other hand, there
is mounting evidence that massive ellipticals favour a Salpeter-like
(Auger et al. 2010a; Treu et al. 2010; Barnabè et al. 2011; Spiniello
et al. 2011) or an even steeper IMF (van Dokkum & Conroy 2010).
These findings, including the results of this work, support the idea
that the traditional picture of a universal IMF (see e.g. Kroupa
2002) might need to be revised in favour of a more complicated
scenario where the IMF depends on the galaxy mass and/or Hubble
type.

7.5 Constraints on the stellar anisotropy

Determining the shape of the velocity dispersion ellipsoid of disc
galaxies is important not only in order to understand their global
dynamical properties, which are related to the formation and evo-
lution mechanisms, but also because the vertical-to-radial velocity
dispersion ratio σ z/σ R can be used, together with the galaxy scale
height distribution, to derive the dynamical mass of the disc (see
e.g. Bottema 1997; Kregel, van der Kruit & Freeman 2005; Westfall
et al. 2011).

From our analysis, we infer a meridional anisotropy parameter
b = 1.77+0.30

−0.29, with a very symmetric posterior distribution around
the median value. In order to facilitate the comparison with the
disc galaxy studies in the literature, it is convenient to express the
anisotropy in the notation βz = 1 − σ 2

z /σ 2
R (see Section 5.1), where

βz = 0 corresponds to isotropy: in this case we have βz = 0.43+0.08
−0.11.

These results show that, for SDSS J2141, the velocity dispersion in
the vertical direction is about three quarters of the radial velocity

dispersion. The probability that the velocity dispersion ellipsoid is
approximately isotropic in the meridional plane (i.e. βz = 0.0 ±
0.1) is only of the order of 1 per cent. This confirms that two-
integral DF models (which are semi-isotropic, i.e. have σ 2

R = σ 2
z

everywhere; see e.g. Binney & Tremaine 2008) do not provide an
ideal description of the dynamical properties of this galaxy, and
a more flexible approach allowing for anisotropy, such as the one
adopted in this work, is warranted. Within the hypothesis of axial
symmetry, we can then conclude that the disc galaxy DF respects a
third integral of motion (cf. e.g. Noordermeer et al. 2008).

These findings are in agreement with numerous dynamical stud-
ies of disc galaxies, including the Milky Way, which are well known
to have velocity dispersion ellipsoids flattened along the vertical di-
rection (see van der Kruit & Freeman 2011, and references therein).
For local disc galaxies, Gerssen et al. (1997, 2000) and Shapiro
et al. (2003) determine 0.30 � βz � 0.75. Williams et al. (2009),
adopting a dynamical model analogous to the one used in this work
(i.e. based on anisotropic Jeans equations), find 0.0 � βz � 0.5 for
a sample of 14 spiral and S0 galaxies. Noordermeer et al. (2008),
using 2D kinematic data sets to analyse the dynamics of four early-
type disc galaxies, find βz � 0.5, perfectly consistent with the result
for SDSS J2141. Recently, one of the galaxies studied in detail in
the DiskMass Survey was determined to have a more flattened βz =
0.77 (Westfall et al. 2011).

We remark that the present study represents the first determination
of the anisotropy parameter for a disc galaxy well beyond the local
Universe, at a redshift zlens � 0.14 (a previous combined lensing
and dynamics study of a disc galaxy at a lower redshift, zlens � 0.04,
was conducted by van de Ven et al. 2010, who found βz = 0.1 ±
0.1, consistent with the system being semi-isotropic).

8 C O N C L U S I O N S

We have carried out an in-depth, self-consistent analysis of the
mass and dynamical structure of the lens disc galaxy SDSS J2141
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at redshift 0.14 by combining the constraints from gravitational
lensing, Hα rotation curve and stellar kinematics. We have adopted
a flexible axially symmetric mass model consisting of a gNFW dark
matter halo and a self-gravitating stellar distribution obtained from
the MGE parametrization of the observed luminous profile. We have
modelled the kinematics by means of anisotropic Jeans equations
in order to allow for a velocity dispersion ellipsoid that is flattened
in the meridional plane, as is typical for disc galaxies.

This work improves in several ways (namely, the inclusion of
stellar kinematics constraints and the upgraded mass and dynamical
model) on the study of this same object described in Paper II, and
represents the most accurate and detailed analysis to date of the
dark and luminous mass profile of a disc galaxy beyond the local
Universe, i.e. at redshift �0.1. The main conclusions of this analysis
can be summarized as follows.

(i) The spherical dark matter mass fraction within 2.2Rd is fDM =
0.28+0.15

−0.10, independent of assumptions on the stellar populations in
the galaxy. The dark matter fraction increases with radius, but does
not become dominant within the range probed by the observations,
which extend to approximately R = 14 kpc. Models without dark
matter (i.e. f DM < 0.05) are ruled out at more than the 3σ level.

(ii) We test the maximum disc hypothesis: we find that, at 2.2Rd,
the fractional contribution of the baryons to the total circular ve-
locity is 0.87+0.05

−0.09. This corresponds to a maximal disc (following
the definition of Sackett 1997); the probability of having a submax-
imal disc for SDSS J2141 is 10 per cent. This is in disagreement
with recent studies of local disc galaxies (e.g. the DiskMass Sur-
vey; Bershady et al. 2011; Martinsson 2011), which typically find
submaximal discs.

(iii) The gNFW dark matter halo is characterized by a virial
velocity vvir = 242+44

−39 km s−1 and a concentration parameter
c−2 = 7.7+4.2

−2.5, implying a generalized scale radius r−2 = 41+27
−19 kpc.

This is in very good agreement with the predictions from N-body
simulations in a �CDM cosmology (i.e. assuming no contraction
or expansion of the halo in response to galaxy formation).

(iv) The inner slope of the dark matter halo is only weakly con-
strained, γ = 0.82+0.65

−0.54, and is consistent with an unmodified NFW
profile (γ = 1). We can still conclude, however, that very steep inner
profiles with γ � 1.7 are disfavoured.

(v) The dark matter halo is moderately oblate, with a 3D axial
ratio qh = 0.75+0.27

−0.16, and a very low probability for significantly
prolate haloes (i.e. qh � 1.25). Recent high-resolution simulations
(e.g. Abadi et al. 2010; Tissera et al. 2010) find that the baryons
have the effect of turning the prolate triaxial dark matter haloes
into roughly oblate spheroids, a scenario that is consistent with the
results of this work.

(vi) The total baryonic mass is tightly constrained by the com-
bined lensing and dynamics analysis, and is determined to be
log10(M�/M�) = 11.12+0.05

−0.09, independent of the IMF. When ac-
counting for the expected cold gas contribution, we obtain a stel-
lar mass log10(M�/M�) = 11.01+0.08

−0.11. This value is in excellent
agreement with the stellar mass that is predicted when assuming
a Chabrier IMF. Model comparison shows that there is substantial
evidence in favour of a Chabrier IMF with respect to a Salpeter IMF
(the Bayes factor is 5.7, corresponding to a 85 per cent probability).

(vii) We infer a meridional anisotropy parameter βz = 0.43+0.08
−0.11,

implying that, for SDSS J2141, the velocity dispersion ellipsoid
in the meridional plane is flattened along the vertical direction, in
agreement with most studies of local disc galaxies. Semi-isotropic
models (i.e. βz ≈ 0) are ruled out at a very high confidence level,
corroborating the evidence that the dynamics of disc galaxies is not

adequately described by two-integral DFs, and a third integral of
motion is required.
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