463 research outputs found

    Occupational Activities and Cognitive Reserve: a Frontier Approach Applied to the Survey on Health, Ageing, and Retirement in Europe

    Get PDF
    The aim of this paper was to use a parametric stochastic frontier approach (coming from the economic literature) to explore the impact of the concept of activity (taken in a broad sense: i.e., including both professional and non-professional activities) on the constitution and the care of cognitive reserve among the European population aged 50 and up. For this purpose, we use individual data collected during the first wave of SHARE (Survey on Health, Ageing and Retirement in Europe) performed in 2004. The advantages of this survey were (1) it included a large population (n = 18,623) geographically distributed throughout Europe; and (2) it simultaneously analyzed several dimensions (physical and mental health, mobility, occupational activities, socioeconomic status, etc.). Our results confirm the positive impact of occupational activities on the cognitive functioning of elderly people. These results are discussed in terms of the prevention of cognitive aging and Alzheimer’s disease, and more particularly of retirement policy issues.

    Occupational Activities and Cognitive Reserve: a Frontier Approach Applied to the Survey on Health, Ageing, and Retirement in Europe (SHARE)

    Full text link
    The aim of this paper was to use a parametric stochastic frontier approach (coming from the economic literature) to explore the impact of the concept of activity (taken in a broad sense: i.e., including both professional and non-professional activities) on the constitution and the care of cognitive reserve among the European population aged 50 and up. For this purpose, we use individual data collected during the first wave of SHARE (Survey on Health, Ageing and Retirement in Europe) performed in 2004. The advantages of this survey were (1) it included a large population (n = 18,623) geographically distributed throughout Europe; and (2) it simultaneously analyzed several dimensions (physical and mental health, mobility, occupational activities, socioeconomic status, etc.). Our results confirm the positive impact of occupational activities on the cognitive functioning of elderly people. These results are discussed in terms of the prevention of cognitive aging and Alzheimer’s disease, and more particularly of retirement policy issues

    Deriving ice thickness, glacier volume and bedrock morphology of the Austre Lovénbreen (Svalbard) using Ground-penetrating Radar

    Get PDF
    International audienceThe Austre Lovénbreen is a 4.6 km2 glacier on the Archipelago of Svalbard (79°N) that has been surveyed over the last 47 years in order of monitoring in particular the glacier evolution and associated hydrological phenomena in the context of nowadays global warming. A three-week field survey over April 2010 allowed for the acquisition of a dense mesh of Ground-penetrating Radar (GPR) data with an average of 14683 points per km2 (67542 points total) on the glacier surface. The profiles were acquired using a Mala equipment with 100 MHz antennas, towed slowly enough to record on average every 0.3 m, a trace long enough to sound down to 189 m of ice. One profile was repeated with 50 MHz antenna to improve electromagnetic wave propagation depth in scattering media observed in the cirques closest to the slopes. The GPR was coupled to a GPS system to position traces. Each profile has been manually edited using standard GPR data processing including migration, to pick the reflection arrival time from the ice-bedrock interface. Snow cover was evaluated through 42 snow drilling measurements regularly spaced to cover all the glacier. These data were acquired at the time of the GPR survey and subsequently spatially interpolated using ordinary kriging. Using a snow velocity of 0.22 m/ns, the snow thickness was converted to electromagnetic wave travel-times and subtracted from the picked travel-times to the ice-bedrock interface. The resulting travel-times were converted to ice thickness using a velocity of 0.17 m/ns. The velocity uncertainty is discussed from a common mid-point profile analysis. A total of 67542 georeferenced data points with GPR-derived ice thicknesses, in addition to a glacier boundary line derived from satellite images taken during summer, were interpolated over the entire glacier surface using kriging with a 10 m grid size. Some uncertainty analysis were carried on and we calculated an averaged ice thickness of 76 m and a maximum depth of 164 m with a relative error of 11.9%. The volume of the glacier is derived as 0.3487±0.041 km3. Finally a 10-m grid map of the bedrock topography was derived by subtracting the ice thicknesses from a dual-frequency GPS-derived digital elevation model of the surface. These two datasets are the first step for modelling thermal evolution of the glacier and its bedrock, as well as the main hydrological network

    New frontiers in belowground ecology for plant protection from root-feeding insects

    Get PDF
    Herbivorous insect pests living in the soil represent a significant challenge to food security given their persistence, the acute damage they cause to plants and the difficulties associated with managing their populations. Ecological research effort into rhizosphere interactions has increased dramatically in the last decade and we are beginning to understand, in particular, the ecology of how plants defend themselves against soil-dwelling pests. In this review, we synthesise information about four key ecological mechanisms occurring in the rhizosphere or surrounding soil that confer plant protection against root herbivores. We focus on root tolerance, root resistance via direct physical and chemical defences, particularly via acquisition of silicon-based plant defences, integration of plant mutualists (microbes and entomopathogenic nematodes, EPNs) and the influence of soil history and feedbacks. Their suitability as management tools, current limitations for their application, and the opportunities for development are evaluated. We identify opportunities for synergy between these aspects of rhizosphere ecology, such as mycorrhizal fungi negatively affecting pests at the root-interface but also increasing plant uptake of silicon, which is also known to reduce herbivory. Finally, we set out research priorities for developing potential novel management strategies

    An Expert Position Paper from the Special Interest Group on Sensitive Skin of the International Forum for the Study of Itch

    Get PDF
    Sensitive skin is a frequent complaint in the general population, in patients, and among subjects suffering from itch. The International Forum for the Study of Itch (IFSI) decided to initiate a special interest group (SIG) on sensitive skin. Using the Delphi method, sensitive skin was defined as “A syndrome defined by the occurrence of unpleasant sensations (stinging, burning, pain, pruritus, and tingling sensations) in response to stimuli that normally should not provoke such sensations. These unpleasant sensations cannot be explained by lesions attributable to any skin disease. The skin can appear normal or be accompanied by erythema. Sensitive skin can affect all body locations, especially the face”. This paper summarizes the background, unresolved aspects of sensitive skin and the process of developing this definition

    Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone

    Get PDF
    The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely un- known. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the function- ing of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22–15 ÎŒGy h−1) and (ii) along a short distance gradient of radioactive contamination (1.2–29 ÎŒGy h−1) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimat- ed the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced eco- logical consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150 ÎŒGy h−1. This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the un- contaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes
    • 

    corecore