1,287 research outputs found

    How to use mixed precision in ocean models : Exploring a potential reduction of numerical precision in NEMO 4.0 and ROMS 3.6

    Get PDF
    ceived funding from the EU ESiWACE H2020 Framework Programme under grant agreement no. 823988, from the Severo Ochoa (SEV-2011-00067) program of the Spanish Government and from the Ministerio de Economia y Competitividad under contract TIN2017-84553-C2-1-R.Mixed-precision approaches can provide substantial speed-ups for both computing- and memory-bound codes with little effort. Most scientific codes have overengineered the numerical precision, leading to a situation in which models are using more resources than required without knowing where they are required and where they are not. Consequently, it is possible to improve computational performance by establishing a more appropriate choice of precision. The only input that is needed is a method to determine which real variables can be represented with fewer bits without affecting the accuracy of the results. This paper presents a novel method that enables modern and legacy codes to benefit from a reduction of the precision of certain variables without sacrificing accuracy. It consists of a simple idea: we reduce the precision of a group of variables and measure how it affects the outputs. Then we can evaluate the level of precision that they truly need. Modifying and recompiling the code for each case that has to be evaluated would require a prohibitive amount of effort. Instead, the method presented in this paper relies on the use of a tool called a reduced-precision emulator (RPE) that can significantly streamline the process. Using the RPE and a list of parameters containing the precisions that will be used for each real variable in the code, it is possible within a single binary to emulate the effect on the outputs of a specific choice of precision. When we are able to emulate the effects of reduced precision, we can proceed with the design of the tests that will give us knowledge of the sensitivity of the model variables regarding their numerical precision. The number of possible combinations is prohibitively large and therefore impossible to explore. The alternative of performing a screening of the variables individually can provide certain insight about the required precision of variables, but, on the other hand, other complex interactions that involve several variables may remain hidden. Instead, we use a divide-and-conquer algorithm that identifies the parts that require high precision and establishes a set of variables that can handle reduced precision. This method has been tested using two state-of-the-art ocean models, the Nucleus for European Modelling of the Ocean (NEMO) and the Regional Ocean Modeling System (ROMS), with very promising results. Obtaining this information is crucial to build an actual mixed-precision version of the code in the next phase that will bring the promised performance benefits

    In and out of the minor groove: Interaction of an AT-rich DNA with the drug CD27

    Get PDF
    The DNA of several pathogens is very rich in AT base pairs. Typical examples include the malaria parasite Plasmodium falciparum and the causative agents of trichomoniasis and trypanosomiases. This fact has prompted studies of drugs which interact with the minor groove of DNA, some of which are used in medical practice. Previous studies have been performed almost exclusively with the AATT sequence. New features should be uncovered through the study of different DNA sequences. In this paper, the crystal structure of the complex of the DNA duplex d(AAAATTTT)2 with the dicationic drug 4,4'-bis(imidazolinylamino) diphenylamine (CD27) is presented. The drug binds to the minor groove of DNA as expected, but it shows two new features that have not previously been described: (i) the drugs protrude from the DNA and interact with neighbouring molecules, so that they may act as cross-linking agents, and (ii) the drugs completely cover the whole minor groove of DNA and displace bound water. Thus, they may prevent the access to DNA of proteins such as AT-hook proteins. These features are also expected for other minor-groove binding drugs when associated with all-AT DNA. These findings allow a better understanding of this family of compounds and will help in the development of new, more effective drugs. New data on the biological interaction of CD27 with the causative agent of trichomoniasis, Trichomonas vaginalis, are also reported.Postprint (published version

    Structure vs. properties chirality, optics and shapes in amphiphilic porphyrin J-aggregates

    Get PDF
    The structure of the meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4) J-aggregates could be determined by X-ray and electron diffraction methods. A sheet-like architecture reveals the relationship between structure and chirality, optics and shapes of the J-aggregate of the meso 4-sulfonatophenyl- and phenyl- substituted porphyrins. The structure of the J-aggregates of H4TPPS4 belongs to the chiral space group P21 and includes four porphyrin molecules in its unit cell. The intermolecular stabilization of the zwitterionic units by hydrogen bonding and electrostatic interactions between the positively charged central NH groups and the periphery anionic sulfonato groups results in a structure of porphyrins sheets along the [ ] plane direction. The structure of the sheet on the [ ] plane is already chiral and its molecular architecture explains the simultaneous presence of H- and J-aggregate bands in their absorption spectra. This structure also accounts for the high similarity observed between the absorption spectra of different mesophorms of the same substance and even between different members of the series of meso-4-sulfonatophenyl-and-aryl substituted diprotonated porphyrins. The possibility, or not, of the sheet-like structure on [ ] to interact with other layers, either through ionic or hydrophobic interactions, depends on the substitution pattern at the meso-positions of the porphyrin ring. Thus, the different morphologies of the particles [mono- bi- and multilayered] of this series of J-aggregates are explained taking into account the role that the fourth meso-subtituent plays in the interlayer stabilization. The results suggest that supramolecular helicity, previously detected in several J-aggregates, is not the explanation of their chirality but would be the expression of the intrinsic chirality of the packing between building blocks

    Functional and structural analysis of AT-specific minor groove binders that disrupt DNA–protein interactions and cause disintegration of the Trypanosoma brucei kinetoplast

    Get PDF
    Trypanosoma brucei, the causative agent of sleeping sickness (Human African Trypanosomiasis, HAT), contains a kinetoplast with the mitochondrial DNA (kDNA), comprising of >70% AT base pairs. This has prompted studies of drugs interacting with AT-rich DNA, such as the N-phenylbenzamide bis(2-aminoimidazoline) derivatives 1 [4-((4,5-dihydro-1H-imidazol-2-yl)amino)-N-(4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)benzamide dihydrochloride] and 2 [N-(3-chloro-4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)-4-((4,5-dihydro-1H-imidazol-2-yl)amino)benzamide] as potential drugs for HAT. Both compounds show in vitro effects against T. brucei and in vivo curative activity in a mouse model of HAT. The main objective was to identify their cellular target inside the parasite. We were able to demonstrate that the compounds have a clear effect on the S-phase of T. brucei cell cycle by inflicting specific damage on the kinetoplast. Surface plasmon resonance (SPR)–biosensor experiments show that the drug can displace HMG box-containing proteins essential for kDNA function from their kDNA binding sites. The crystal structure of the complex of the oligonucleotide d[AAATTT]2 with compound 1 solved at 1.25 Å (PDB-ID: 5LIT) shows that the drug covers the minor groove of DNA, displaces bound water and interacts with neighbouring DNA molecules as a cross-linking agent. We conclude that 1 and 2 are powerful trypanocides that act directly on the kinetoplast, a structure unique to the order Kinetoplastida

    Escherichia coli NusG Links the Lead Ribosome with the Transcription Elongation Complex

    Get PDF
    It has been known for more than 50 years that transcription and translation are physically coupled in bacteria, but whether or not this coupling may be mediated by the two-domain protein N-utilization substance (Nus) G in Escherichia coli is still heavily debated. Here, we combine integrative structural biology and functional analyses to provide conclusive evidence that NusG can physically link transcription with translation by contacting both RNA polymerase and the ribosome. We present a cryo-electron microscopy structure of a NusG:70S ribosome complex and nuclear magnetic resonance spectroscopy data revealing simultaneous binding of NusG to RNAP and the intact 70S ribosome, providing the first direct structural evidence for NusG-mediated coupling. Furthermore, in vivo reporter assays show that recruitment of NusG occurs late in transcription and strongly depends on translation. Thus, our data suggest that coupling occurs initially via direct RNAP:ribosome contacts and is then mediated by NusG

    Escherichia coli NusG Links the Lead Ribosome with the Transcription Elongation Complex

    Get PDF
    It has been known for more than 50 years that transcription and translation are physically coupled in bacteria, but whether or not this coupling may be mediated by the two-domain protein N-utilization substance (Nus) G in Escherichia coli is still heavily debated. Here, we combine integrative structural biology and functional analyses to provide conclusive evidence that NusG can physically link transcription with translation by contacting both RNA polymerase and the ribosome. We present a cryo-electron microscopy structure of a NusG:70S ribosome complex and nuclear magnetic resonance spectroscopy data revealing simultaneous binding of NusG to RNAP and the intact 70S ribosome, providing the first direct structural evidence for NusG-mediated coupling. Furthermore, in vivo reporter assays show that recruitment of NusG occurs late in transcription and strongly depends on translation. Thus, our data suggest that coupling occurs initially via direct RNAP:ribosome contacts and is then mediated by NusG

    Clan CD of cysteine peptidases as an example of evolutionary divergences in related protein families across plant clades

    Get PDF
    Comparative genomic analyses are powerful tools that can be used to analyze the presence, conservation, and evolution of protein families and to elucidate issues concerning their function. To deal with these questions, we have chosen the clan CD of cysteine peptidases, which is formed by different protein families that play key roles in plants. An evolutionary comparative analysis of clan CD cysteine peptidases in representative species of different taxonomic groups that appeared during the evolution of the Viridiplantae was performed. The results obtained indicates: i) C13 GPI:protein transamidases, C14 metacaspases I, and C50 separases are present in all taxonomic groups; ii) C13 legumains and C14 metacaspases II are absent in some basal algae groups; iii) C11 clostripains have only been found in the two Chlorophyceae species; iv) C25 gingipains and C80 RTX toxins have not been found in plants. Moreover, gene duplication events could have been associated in some families to the increasing complexities acquired in land plants. These findings have demonstrated that comparative genomics is useful to provide valuable insights on the differential evolution of the related peptidase families belonging to clan CD in plant clades. The low number of protein members suggests a restricted physiological role for these peptidase families, mainly in algae species

    Crystal Structure of a Complex of DNA with One AT-Hook of HMGA1

    Get PDF
    We present here for the first time the crystal structure of an AT-hook domain. We show the structure of an AT-hook of the ubiquitous nuclear protein HMGA1, combined with the oligonucleotide d(CGAATTAATTCG)2, which has two potential AATT interacting groups. Interaction with only one of them is found. The structure presents analogies and significant differences with previous NMR studies: the AT-hook forms hydrogen bonds between main-chain NH groups and thymines in the minor groove, DNA is bent and the minor groove is widened

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
    • …
    corecore