8 research outputs found

    Neurodynamics under Different Walking Speeds in Individuals with Chronic Post-Stroke Hemiparesis

    Full text link
    Background and Purpose: Stroke is the leading cause of long-term disability in adults worldwide. The ability to return to walking is often a main goal of rehabilitation in individuals with chronic post-stroke hemiparesis. To increase walking speed, non-neurologically impaired individuals produce greater ankle propulsion force at push-off with greater ankle dorsiflexion angles in swing phase with no change in ankle muscle co-contraction index in the swing phase. It remains unclear if individuals post-stroke would adopt similar neuromuscular strategies. Therefore, our aim was to examine the effect of altered walking speeds on propulsion force at push-off, ankle dorsiflexion angle during swing, and co-contraction of the lower leg musculature in individuals with chronic post-stroke hemiparesis. Subjects: We recruited 7 participants with chronic post-stroke hemiparesis and 7 age-similar, non-neurologically impaired controls. Inclusion criteria were 1) \u3e 6 months post stroke with hemiparesis, 2) able to walk without an assistive device for 2 minutes, and 3) able to follow cues and adhere to instructions. Exclusion criteria were 1) had a history of cerebellar stroke(s) and/or 2) unable to walk without an assistive device for more than 2 minutes. Methods: All subjects were tested under three different walking speed conditions: self-selected walking speed (SSWS), fast walking speed (FWS), and slow walking speed (SWS). We examined the propulsion force at push-off, ankle dorsiflexion angle during swing phase, and co-contraction index of the tibialis anterior and gastrocnemius muscles during stance and swing phases. A 2-factor mixed factorial ANOVA was used to assess each variable between leg and the speed condition (FWS, SSWS, SWS). The legs examined were the paretic limb of participants post-stroke, the non-paretic limb of participants post-stroke, and the non-impaired limb of non-neurologically impaired controls. Results: The ANOVA and post-hoc analyses revealed that there were significant increases in ankle dorsiflexion angle during swing phase and propulsion force at push-off in the FWS (4.6±4.3° and -1.1±0.6 N/kg respectively) condition when compared to the SSWS (5.6±4.8° and -0.9±0.5 N/kg respectively) and SWS (5.3±4.6° and -0.7±0.4 N/kg respectively) conditions across the 3 limbs examined. Additionally, the speed and limb had no main effect (p=0.233 and p=0.554 respectively) on co-contraction index between the tibialis anterior and gastrocnemius at peak dorsiflexion during swing and had a trending main effect (p=0.082) on co-contraction index between the tibialis anterior and gastrocnemius at push off. Discussion: Faster walking speeds may help people post-stroke to improve their propulsion force and ankle kinematics during gait. Future studies should investigate individuals with different types of strokes as well as the percentage of speed increase that evokes consistent improvements in gait mechanics in people post-stroke for physical therapy interventions

    Slow Walking in Individuals with Chronic Post-Stroke Hemiparesis: Speed Mediated Effects of Gait Kinetics and Ankle Kinematics

    Get PDF
    Post-stroke rehabilitation often aims to increase walking speeds, as faster walking is associated with improved functional status and quality of life. However, for successful community ambulation, ability to modulate (increase and decrease) walking speeds is more important than walking continuously at constant speeds. Increasing paretic propulsive forces to increase walking speed has been extensively examined; however, little is known about the mechanics of slow walking post-stroke. The primary purpose of this study was to identify the effects of increased and decreased walking speeds on post-stroke kinetics and ankle kinematics. Fifteen individuals with chronic post-stroke hemiparesis and 15 non-neurologically impaired controls walked over an instrumented treadmill under: slow, self-selected, and fast walking speeds. We examined the peak propulsive forces, propulsive impulse, peak braking forces, braking impulse, and ankle kinematics under each condition. When walking at slow walking speeds, paretic limbs were unable to reduce braking impulse and peak propulsive force or modulate ankle kinematics. Impaired modulation of paretic gait kinetics during slow walking places people post-stroke at high risks for slip-related falls. These findings suggest the need for developing gait retraining paradigms for slow walking in individuals chronically post-stroke that target the ability of the paretic limb to modulate braking forces

    Slow Walking in Individuals with Chronic Post-Stroke Hemiparesis: Speed Mediated Effects of Gait Kinetics and Ankle Kinematics

    No full text
    Post-stroke rehabilitation often aims to increase walking speeds, as faster walking is associated with improved functional status and quality of life. However, for successful community ambulation, ability to modulate (increase and decrease) walking speeds is more important than walking continuously at constant speeds. Increasing paretic propulsive forces to increase walking speed has been extensively examined; however, little is known about the mechanics of slow walking post-stroke. The primary purpose of this study was to identify the effects of increased and decreased walking speeds on post-stroke kinetics and ankle kinematics. Fifteen individuals with chronic post-stroke hemiparesis and 15 non-neurologically impaired controls walked over an instrumented treadmill under: slow, self-selected, and fast walking speeds. We examined the peak propulsive forces, propulsive impulse, peak braking forces, braking impulse, and ankle kinematics under each condition. When walking at slow walking speeds, paretic limbs were unable to reduce braking impulse and peak propulsive force or modulate ankle kinematics. Impaired modulation of paretic gait kinetics during slow walking places people post-stroke at high risks for slip-related falls. These findings suggest the need for developing gait retraining paradigms for slow walking in individuals chronically post-stroke that target the ability of the paretic limb to modulate braking forces

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    No full text
    International audienceSpinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software

    First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

    No full text
    International audienceWe report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7  [1/Hz]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1.8×10-25. At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9×10-24. At 55 Hz we can exclude sources with ellipticities greater than 10-5 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038  kg m2

    Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    No full text
    International audienceDuring their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100  M⊙, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93  Gpc−3 yr−1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore