36 research outputs found

    Toward the development of subnational hybrid input-output tables in a multiregional framework

    Get PDF
    Environmental input–output analyses can be a useful decision support tool at the subnational level, because of its ability to capture economic and environmental impacts at other geographical levels. Yet, such analyses are hindered by the lack of subnational IO tables. Furthermore, the lack of physical product and waste flows in what is known as a “hybrid” table prevents a range of consumption‐based and circular‐economy‐type analyses. We demonstrate the development of a multiregional hybrid IOT (MRHIOT) along with environmental extensions at the subnational level and exemplify it for the case of Belgium. The development procedure discloses a novel approach of combining national hybrid tables, subnational monetary tables, and physical survey‐based data. Such a combination builds upon a partial‐survey approach that includes a range of techniques for initial estimation and reconciliation within a balancing procedure. For the validation of the approaches, we assessed the magnitude of deviations between the initial and final estimates and analyzed the uncertainties inherent to each initial estimation procedure. Subsequently, we conducted a consumption‐based analysis where we assessed the carbon footprint (CF) at the subnational level and highlighted the CF inherent to the interregional linkages. This study provides methodological and application‐based contributions to the discussion on the relevance of hybrid subnational tables and analyses compared to national ones. The proposed approach could be replicable to some extent for further developing subnational MRHIOT. The study is expected to foster more research toward the development of further subnational MRHIOT as well as its associated wide‐ranging applications.Industrial Ecolog

    Pig manure treatment with housefly (Musca domestica) rearing – an environmental life cycle assessment

    Get PDF
    The largest portion of a product’s environmental impacts and costs of manufacturing and use results from decisions taken in the conceptual design phase long before its market entry. To foster sustainable production patterns, applying life cycle assessment in the early product development stage is gaining importance. Following recent scientific studies on using dipteran fly species for waste management, this paper presents an assessment of two insect-based manure treatment systems. Considering the necessity of manure treatment in regions with concentrated animal operations, reducing excess manure volumes with the means of insects presents a potentially convenient method to combine waste reduction and nutrient recovery. An analytical comparison of rearing houseflies on fresh and pre-treated pig manure is reported with reference to agricultural land occupation, water and fossil depletion potential. Based on ex-ante modelled industrial scale rearing systems, the driving factors of performance and environmentally sensitive aspects of the rearing process have been assessed. Expressed per kg manure dry matter reduction, the estimated agricultural land occupation varied between 1.4 and 2.7 m2yr, fossil depletion potential ranged from 1.9 to 3.4 kgoil eq and the obtained water depletion potential was calculated from 36.4 to 65.6 m3. System improvement potential was identified for heating related energy usage and water consumption. The geographical context and the utility of the co-products, i.e. residue substrates and insect products, were determined as influential variables to the application potential of this novel manure treatment concept. The results of this study, applied at the earliest stages of the design of the process, assist evaluation of the feasibility of such a system and provide guidance for future research and development activities.The research leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 312084 (PROteINSECT)

    New Renewable and Biodegradable Particleboards from Jatropha Press Cakes

    Get PDF
    The influence of thermo-pressing conditions on the mechanical properties of particleboards obtained from Jatropha press cakes was evaluated in this study. Conditions such as molding temperature and press cake oil content were included. All particleboards were cohesive, with proteins and fibers acting respectively as binder and reinforcing fillers. Generally, it was the molding temperature that most affected particleboard mechanical properties. The most resistant boards were obtained using 200°C molding temperature. Glass transition of proteins then occurred during molding, resulting in effective wetting of the fibers. At this optimal molding temperature, the best compromise between flexural properties (7.2 MPa flexural strength at break and 2153 MPa elastic modulus), Charpy impact strength (0.85 kJ/m²) and Shore D surface hardness (71.6°), was a board obtained from press cake with low oil content (7.7%). Such a particleboard would be usable as interlayer sheets for pallets, for the manufacture of containers or furniture, or in the building trade

    Implications of biodiesel-induced land-use changes for CO2 emissions: case studies in Tropical America, Africa, and Southeast Asia

    No full text
    Biofuels are receiving growing negative attention. Direct and/or indirect land-use changes that result from their cultivation can cause emissions due to carbon losses in soils and biomass and could negate any eventual greenhouse gas (GHG) reduction benefit. This paper evaluates the implications of land-use change emission on the climate-change mitigation potential of different biofuel production systems in 12 case studies in six countries. We calculated carbon debts created by conversion of different land-use types, ranging from annual cropland to primary forest. We evaluated case studies using three different biofuel crops: oil palm, Jatropha, and soybean. The time needed for each biofuel production system to pay back its carbon debt was calculated based on a life-cycle assessment of the GHG reduction potentials of the system. Carbon debts range from 39 to 1743.7 Mg C02 ha-1. The oil palm case studies created the largest carbon debts (472.8–1743.7 t C02 ha-1) because most of the area expansion came at the expense of dense tropical forest. The highest debt was associated with plantation on peatland. For all cases evaluated, only soybean in Guarantã do Norte and Alta Floresta, Brazil needed less than one human generation (30 years) to repay the initial carbon debt. Highest repayment times were found for Jatropha (76–310 years) and oil palm (59–220 years) case studies. Oil palm established in peatlands had the greatest repayment times (206–220 years). High repayment times for Jatropha resulted from the combined effects of land-cover change and low CO2 emission reduction rate. These outcomes raise serious questions about the sustainability of biofuel production. The carbon implications of conversion of (semi-) natural systems with medium to high biomass indicate that, in order to generate climate benefits, cultivation of biofuel feedstocks should be restricted to areas that already have low carbon content

    Environmental impacts

    No full text

    Climatic growing conditions of Jatropha curcas L

    No full text
    The massive investment in new jatropha plantations worldwide is not sufficiently based on a profound scientific knowledge of its ecology. In this article, we define the climatic conditions in its area of natural distribution by combining the locations of herbarium specimens with corresponding climatic information, and compare these conditions with those in 83 jatropha plantations worldwide. Most specimens (87%) were found in tropical savannah and monsoon climates (Am, Aw) and in temperate climates without dry season and with hot summer (Cfa), while very few were found in semi-arid (BS) and none in arid climates (BW). Ninety-five percent of the specimens grew in areas with a mean annual rainfall above 944 mm year1 and an average minimum temperature of the coldest month (Tmin) above 10.5 C. The mean annual temperature range was 19.3-27.2 C. The climatic conditions at the plantations were different from those of the natural distribution specimens for all studied climatic variables, except average maximum temperature in the warmest month. Roughly 40% of the plantations were situated in regions with a drier climate than in 95% of the area of the herbarium specimens, and 28% of the plantations were situated in areas with Tmin below 10.5 C. The observed precipitation preferences indicate that jatropha is not common in regions with arid and semi-arid climates. Plantations in arid and semi-arid areas hold the risk of low productivity or irrigation requirement. Plantations in regions with frost risk hold the risk of damage due to frost
    corecore