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ABSTRACT:  The infl uence of thermo-pressing conditions on the mechanical properties of particleboards obtained from 
Jatropha press cakes was evaluated in this study. Conditions such as molding temperature and press cake oil 
content were included. All particleboards were cohesive, with proteins and fibers acting respectively as binder 
and reinforcing fillers. Generally, it was the molding temperature that most affected particleboard mechanical 
properties. The most resistant boards were obtained using 200°C molding temperature. Glass transition of 
proteins then occurred during molding, resulting in effective wetting of the fi bers. At this optimal molding 
temperature, the best compromise between fl exural properties (7.2 MPa fl exural strength at break and 2153 
MPa elastic modulus), Charpy impact strength (0.85 kJ/m2) and Shore D surface hardness (71.6°), was a board 
obtained from press cake with low oil content (7.7%). Such a particleboard would be usable as interlayer 
sheets for pallets, for the manufacture of containers or furniture, or in the building trade.
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1 INTRODUCTION

Jatropha curcas is a drought-resistant shrub or tree 

belonging to the family Euphorbiaceae, which is culti-

vated in Central and South America, Southeast Asia, 

India and Africa [1]. It is a plant with many attributes, 

multiple uses and considerable potential [2–4]. The 

seed is the part of the jatropha plant with the highest 

potential for utilization. It contains between 40 and 60% 

oil, and between 20 and 30% proteins. J. curcas oil is 

regarded as a potential alternative to diesel fuel [5]. The 

fact that jatropha oil cannot be used for nutritional pur-

poses without detoxification [1, 6], makes its use as an 

energy source for fuel production very attractive. The 

use of biodiesel from jatropha oil is a promising alterna-

tive to fossil fuel because it is renewable and environ-

mentally friendly, and can also be produced locally.

Conventional industrial technology for the syn-
thesis of biodiesel from vegetable oils, involves iso-
lation of the oil from the seed, refining, and then 
transesterification. Industrial oil extraction from 

oilseeds is usually carried out by mechanical pressing, 
followed by solvent extraction with n-hexane. Over the 
last twenty years, there has been much focused research 
concerning continuous oil extraction by mechanical 
pressing using extrusion technology [7–11]. This pro-
cess in a single-screw press (or single-expeller press) 
is widely employed for oilseeds, using a single screw 
of variable pitch and channel depth, slowly rotating 
in a cage-type barrel [7]. However, transport of mate-
rial in this type of press depends mainly on friction 
between the material and the barrel’s inner and screw 
surfaces during screw rotation. Thus, a solid core 
component is often necessary to produce this friction, 
causing overheating, high energy consumption, plus 
oil and cake deterioration. Furthermore, single-screw 
presses provide insuffi cient crushing and mixing if 
they are not equipped with breaker bars, or other spe-
cial equipment.

A twin-screw oil press can be expected to solve 
these problems because of the higher transporta-
tion force, similar to a gear pump, and better mixing 
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and crushing at the twin-screw interface, improving 
mechanical lysis of the cells [12]. In addition, energy 
consumption of the twin-screw press is more effi -
cient [7, 13]. Thus, twin-screw extrusion technology 
has increasingly been successfully used to undertake 
mechanical pressing of various oilseeds [7, 13–21].

Mechanical pressing of jatropha oilseed was recently 
conducted using a co-rotating (Clextral BC 21, France) 
twin-screw extruder [22]. In this study, the influence of 
operating conditions, including screw configuration, 
pressing temperature and screw rotation speed, on oil 
yield, specific mechanical energy and oil quality, was 
examined. Generally, it was the screw configuration, 
or profile, that most affected oil extraction effi ciency. 
The best oil yields, a minimum of 57.5%, were obtained 
with a trituration zone composed of 10 monolobe and 
10 bilobe paddles, and a pressing zone composed of 50 
mm long, reverse pitch screws with a −33 mm pitch. In 
addition, oil extraction yield increased with decreas-
ing temperature and screw rotation speed. Highest oil 
extraction yield (70.6%) with good press cake qual-
ity (residual oil content lower than 8%) was obtained 
under operating conditions of 153 rpm screw rota-
tion speed, 5.16 kg/h inlet flow rate of jatropha seeds, 
and 80°C pressing temperature. The corresponding 
expressed oil was inexpensive to produce (314 W h/
kg expressed oil) compared with another continuous 
technique, i.e., the single expeller press, commonly 
used for mechanical extraction of jatropha oil (about 
1.6 kW h/kg expressed oil) [23]. Its quality was also 
satisfactory for biodiesel production.

After extraction of oil from jatropha seeds using the 
twin-screw extruder, the oil content in the press cake 
is at least 5.9% of the dry matter [22]. Although this 
can be a disadvantage for direct utilization of the press 
cake, it could be converted into usable energy by com-
bustion, gasification or pyrolysis [24, 25]. The press 
cake can also act as reinforcing filler for a biodegrad-
able polymer, i.e., poly(ε-caprolactone) (PCL), and 
have potential uses in biocomposite applications [26]. 
Nevertheless, new valorizations of the press cake, as a 
mixture of proteins and lignocellulosic fi bers coming 
mainly from the shells but from the kernel breakdown 
process as well, could also be considered [27–39]. In 
particular, as a natural composite, it could be trans-
formed into biodegradable and value-added agroma-
terials by thermo-pressing [34, 35, 37–39].

This study was aimed at evaluating the infl uence of 
thermo-pressing conditions (molding temperature, oil 
content in press cake) on mechanical properties (fl ex-
ural properties, Charpy impact strength and Shore D 
surface hardness) of particleboards made from jatro-
pha press cakes produced in a twin-screw extruder, 
inside a mold equipped with vents to allow expression 
of residual oil during molding.

2 EXPERIMENTAL

2.1 Materials

Molding of particleboards was conducted by thermo-

pressing using fi ve different jatropha press cakes (A to 

E). The press cakes were obtained after the extraction 

of oil from ground jatropha seeds using a Clextral BC 

21 (France) twin-screw extruder [22]. Their residual oil 

contents varied from 5.9 (press cake A) to 19.1% of the 

dry matter (press cake E), depending on the operating 

conditions (screw confi guration, pressing tempera-

ture and screw rotation speed) used for mechanical 

pressing in the twin-screw extruder. Moisture con-

tents of equilibrated press cakes A to E were 7.2±0.0%, 

5.8±0.2%, 6.3±0.1%, 6.2±0.0% and 5.9±0.3%, respec-

tively (French standard NF V 03–903).

2.2 Analytical Methods

The moisture contents were determined according to 

French standard NF V 03–903. The mineral contents 

were determined according to French standard NF V 

03–322. The oil contents were determined according 

to French standard NF V 03–908. The protein contents 

were determined according to French standard NF V 

18–100. An estimation of the three parietal constitu-

ents (cellulose, hemicelluloses, and lignins) contained 

in the solids was made using the ADF-NDF method 

from Van Soest and Wine [40, 41]. An estimation of 

the water-soluble components contained in the solids, 

was made by measuring the mass loss of the test sam-

ple after 1 h in boiling water. All determinations were 

carried out in duplicate.

2.3 Particle Size Distribution

The press cakes were examined with a Nachet France 

Z 45 P (France) × 15 binocular magnifier, and six dif-

ferent photographs were taken of each sample and 

analyzed using the Archimed 4.0 (France) software. 

Particle size distribution was determined by manually 

measuring the diameter of all the particles on the six 

photographs, using the ImageJ (USA) software. The 

tapped density of the press cakes was also measured 

in a Granuloshop Densitap ETD-20 (France) volume-

nometer, and the corresponding apparent density, i.e., 

before compaction, was determined at the same time.

2.4 TGA Measurements

Thermogravimetric analysis (TGA) of the press cakes 

was performed with a Shimadzu TGA-50 (Japan) ana-

lyzer. Dynamic analysis was conducted under air at 

a heating rate of 5°C/min, from 20 to 750°C. Before 



analysis, the press cakes were equilibrated in a cli-

matic chamber (60% RH, 25°C) for three weeks. For 

all measurements, the mass of the test sample was 

around 8 mg. The weights of samples were measured 

as a function of temperature and stored. These data 

were later used to plot the percentage of undegraded 

sample (1 - D) (%) as a function of temperature, where
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and W
0
 and W were the weights at the starting point 

and during scanning (mg). All measurements were 

carried out in duplicate.

2.5 DVS Measurements

Dynamic vapor sorption (DVS) of the press cakes 

was performed with a DVS Advantage automated 

gravimetric vapor sorption (Surface Measurement 

Systems Ltd., London, UK) analyzer. DVS measures 

the uptake of vapor gravimetrically using a Cahn 

D200 recording ultramicrobalance with a mass reso-

lution of ±0.1 μg. The relative humidity around the 

sample was controlled by mixing saturated and dry 

carrier gas streams using mass flow controllers. A 

constant temperature was maintained (±0.1°C) by 

enclosing the entire system in a temperature-con-

trolled incubator. Before analysis, the press cakes 

were stored in a desiccator. For each experiment, the 

press cake was immediately placed into the DVS ana-

lyzer under a continuous stream of dry (<0.1% RH) 

air. A sample size between 15 and 25 mg was used. 

Prior to exposure to any water vapor, the samples 

were dried at 0% RH to remove superficial water 

present and establish a dry baseline mass. The sam-

ples were exposed to the following relative humid-

ity profile: 0%, 15%, 30%, 45%, 60%, 75% and 90% 

RH. At each stage, the sample mass was allowed to 

reach equilibrium before the relative humidity was 

increased. An isotherm was calculated from the 

complete moisture sorption profile using the DVS 

Advanced Analysis Suite v3.6 software. All experi-

ments were performed at 25°C.

2.6 DSC Measurements

Differential scanning calorimetry (DSC) of the press 

cakes was performed from deoiled materials with a 

Mettler Toledo DSC 1 STARe System (Switzerland) 

power compensation calorimeter fitted with an intra-

cooler cooling system. The purge gas used was nitro-

gen of analytical quality at a flow rate of 50 mL/min. 

Temperature and energy calibration was carried out 

with zinc (T
f
 = 419.5°C), indium (T

f
 = 156.6°C) and 

distilled water (T
f
 = 0°C) before the beginning of the 

tests. All analyses were performed with hermetic 120 

μL stainless steel capsules (plus an empty reference 

capsule) fitted with O-rings resistant to an internal 

pressure of 20 bar (Mettler Toledo). They were carried 

out at a heating speed of 5°C/min from 25°C to 250°C. 

Before analysis, the deoiled press cakes were either 

equilibrated in a climatic chamber (60% RH, 25°C) for 

three weeks, or dried in a ventilated oven (60°C, 12 

h). Sample mass was around 10 mg and all measure-

ments were made in triplicate. The treatment of data 

obtained was carried out using the STARe software 

(Mettler Toledo).

2.7 Thermo-pressing

The press cakes were molded by thermo-pressing 

inside an aluminum mold, using a 400 ton capacity 

Pinette Emidecau Industries (France) heated hydrau-

lic press, producing 150 mm square particleboards. 

The mold was equipped with vents to allow expres-

sion of residual oil from press cakes during molding. 

The press cakes were dried in a ventilated oven (60°C, 

12 h) before molding, to minimize vapor generation 

during thermo-pressing and so restrict the risk of 

defects such as blisters inside the particleboards. 

On molding, moisture contents of press cakes A to 

E were 1.4±0.3%, 1.0±0.2%, 1.4±0.0%, 1.2±0.2% and 

1.4±0.3%, respectively. Press cake quantity, pressure 

applied and molding time for all experiments were 

145 g (i.e., 644 mg/cm2), 297 kgf/cm2 and 90 s, respec-

tively. At the same time, three molding temperatures 

were tested for each press cake: 160, 180 and 200°C. 

Particleboards molded at 160°C from press cakes A to 

E were referenced A1, B1, C1, D1 and E1, respectively. 

Likewise, those molded at 180°C were referenced A2, 

B2, C2, D2 and E2, and those molded at 200°C were 

referenced A3, B3, C3, D3 and E3. Two particleboards 

were manufactured for all the thermo-pressing con-

ditions tested (including temperature of the alu-

minum mold, and press cake). One was used to assess 

mechanical properties for bending, and the second 

for measuring Shore D surface hardness, and Charpy 

impact strength.

Oil expression yield during molding was calculated 
from the following formulae:

    

( ) ( )× − ×
= ×

×
C C PB PB
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C C

m L m L
R 100
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where R
L2

 is the oil expression yield during mold-

ing relative to the residual oil contained in the press 



cake (%), m
C
 the mass of press cake used for thermo-

pressing (g), m
PB

 the mass of particleboard (g), L
C
 the 

residual oil content in the press cake (%), and L
PB

 the 

oil content in the particleboard (%).
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where R’
L2

 is the oil expression yield during molding 

relative to the total amount of oil in the jatropha seeds 

(%), and R
L1

 is the oil extraction yield in the twin-screw 

extruder based on the residual oil content in the press 

cake (%).

The total oil yield (extraction of oil from jatropha 
seeds in the twin-screw extruder, and expression of 
residual oil from press cake during molding) was cal-
culated from the following formulae:
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where R
LT

 is the total oil yield (the difference between 

the oil contained in the jatropha seeds and the residual 

oil in the press cake after extraction of oil in the twin-

screw extruder, and oil expressed during molding) rel-

ative to the total amount of oil that the jatropha seeds 

contain (%).
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where R’
LT

 is the total oil yield (oil extracted in the 

twin-screw extruder, and oil expressed during mold-

ing) relative to the total amount of oil that the jatropha 

seeds contain (%), and R’
L1

 is the oil extraction yield in 

the twin-screw extruder relative to the total oil that the 

jatropha seeds contain (%).

2.8 Mechanical Properties for Bending

An Instron 33R4204 (USA) universal testing machine 

fitted with a 500 N load cell was used to assess the 

flexural properties of the test specimens according 

to the French standard NF EN 310, including break-

ing load (F), flexural strength at break (σ
f
), and elastic 

modulus (E
f
). The test specimens were 150 mm long 

and 30 mm wide. Their thickness was measured at 

three points with an electronic digital sliding caliper 

with a 0.01 mm resolution, and the mean value (t) 

was recorded to calculate their volume and section. 

All specimens were weighed to calculate their mean 

apparent density (d). The test speed was 2 mm/min 

and the grip separation was 100 mm. Test specimens 

were cut, and equilibrated in a climatic chamber (60% 

RH, 25°C) for three weeks before being tested. All 

determinations were carried out four times.

2.9 Charpy Impact Strength

A 0-40 daN cm Testwell Wolpert (France) Charpy 

machine was used to assess the impact strength of 

the unnotched test specimens according to the French 

standard NF EN ISO 179, including absorbed energy 

(W), and resilience (K). The test specimens were 60 

mm long and 10 mm wide. Their thickness was meas-

ured at three points with an electronic digital sliding 

caliper with a 0.01 mm resolution, and the mean value 

(t) was recorded to calculate their section. Impact 

strength measurements were made at 23°C using the 

three points bending technique, and grip separation 

was 25 mm. Test specimens were cut and equilibrated 

in a climatic chamber (60% RH, 25°C) for three weeks 

before being tested. All determinations were carried 

out sixteen times.

2.10 Shore D Surface Hardness

A Bareiss (Germany) durometer was used to assess 

the Shore D surface hardness of the particleboards 

according to the French standard NF EN ISO 868. 

Particleboards were equilibrated in a climatic chamber 

(60% RH, 25°C) for three weeks before being tested. 

All determinations were carried out 48 times (24 times 

for each side of the particleboard).

2.11 Colorimetry

A Minolta CR-410 (Japan) spectrocolorimeter was 

used in refl ectance mode to compare the color of the 

particleboards with that of the corresponding press 

cake and that of the ground jatropha seeds. The par-

ticleboards had been previously crushed using a Foss 

Cyclotec 1093 (Denmark) mill fi tted with a 1 mm screen. 

The ground materials were equilibrated in climatic 

chamber (60% RH, 25°C) for three weeks before being 

tested. The color measurements were made using the 

CIE L*a*b* referential, which is widely employed for 

nonluminous objects. The illuminant was D65, and the 

observer angle was 2°. In the L*a*b* color space, L* is 

the lightness and it varies from 0 (black) to 100 (white), 

and a* and b* are the chromaticity coordinates: +a* is 

the red direction, -a* is the green direction, +b* is the 

yellow direction, and -b* is the blue direction. The 

center is achromatic. All determinations were carried 

out fi ve times.



The L* color values measured were used to esti-
mate the darkening of the press cake compared to the 
ground jatropha seeds and also to estimate the lighten-
ing of the particleboard compared to the correspond-
ing press cake. In addition, the color difference (ΔE*) 
between the ground jatropha seeds and press cake 
analyzed, or between the press cake and particleboard 
analyzed, was calculated using the following formula:

 Δ Δ + Δ + Δ2 2 2E* = ( L*) ( a*) ( b*)  (6)

where ΔL*, Δa* and Δb* are the differences between the 

ground jatropha seeds and the press cake, or between 

the press cake and the particleboard, in L*, a* and b*, 

respectively.

3 RESULTS AND DISCUSSION

3.1  Physicochemical Characterization of 
Press Cakes

The fi ve press cakes used here (A to E) originated from a 

previous study on extraction of oil from ground jatropha 

seeds using a Clextral BC 21 twin-screw extruder [22]. 

They were more or less rich in lipids, thus their residual 

oil contents were 5.9, 7.7, 9.0, 13.3 and 19.1% of the dry 

matter, respectively (Table 1). This led to oil extraction 

yields (R
L1

), based on the residual oil contents in the 

press cakes, of 89.6, 85.0, 82.2, 73.8 and 59.1%, respec-

tively. After elimination of the “foot” (i.e., the solid parti-

cles forced through the fi lter) in the fi ltrates by centrifu-

gation, oil extraction yields (R’
L1

) relative to the total oil 

that the jatropha seeds contained were in fact 53.6, 70.6, 

57.5, 46.3 and 29.6%, respectively. As mixtures of proteins 

(from 18.9 to 23.8% of the dry matter) and lignocellulosic 

fi bers (from 43.2 to 51.3% of the dry matter) (Table 1), 

the press cakes could also be considered as natural com-

posites. They also contained minerals and hemicellu-

loses: from 4.9 to 5.9% of the dry matter and from 5.4 to 

16.7% of the dry matter, respectively (Table 1). Moreover, 

the hemicellulose contents were much greater in press 

cakes B and C that had been produced in the twin-screw 

extruder with optimized screw profi le: 16.7 and 15.6% of 

the dry matter, respectively, against 5.4–6.8% of the dry 

matter for the three other press cakes. This screw profi le 

consisted of a trituration zone composed of 10 monolobe 

and 10 bilobe paddles, and a pressing zone composed of 

50 mm long, reverse pitch screws with a -33 mm pitch 

[22]. It contributed to minimizing the mass content of the 

foot in the fi ltrate: 32.3 and 42.4% for press cakes B and 

Table 1 Chemical composition of press cakes A to E (% of the dry matter) and corresponding 
oil extraction yields in the Clextral BC 21 twin-screw extruder (%), color in the CIE L*a*b* 
referential, and apparent and tapped densities (g/cm3) of the press cakes.

Press cake A B C D E

Chemical composition (% of the dry matter)

 Minerals [22] 5.7±0.1 5.9±0.0 5.6±0.0 5.5±0.0 4.9±0.0

 Lipids [22] 5.9±0.0 7.7±0.0 9.0±0.1 13.3±0.0 19.1±0.0

 Proteins [22] 21.3±0.0 23.8±0.1 21.9±0.0 21.1±0.2 18.9±0.4

 Cellulose 47.2±0.1 40.8±0.3 41.9±0.3 43.1±0.5 41.0±0.7

 Hemicelluloses 6.8±0.3 16.7±0.4 15.6±0.6 5.4±0.2 5.5±0.6

 Lignins 4.1±0.3 3.8±0.2 3.0±0.1 2.2±0.1 2.2±0.2

 Water-soluble components 16.3±0.6 16.6±0.3 16.1±0.6 13.4±0.3 13.3±0.2

Color in the CIE L*a*b* referential

 L* 69.4±0.2 68.8±0.2 67.6±0.0 67.7±0.1 66.9±0.0

 a* 0.0±0.1 0.4±0.1 -0.1±0.0 -0.3±0.1 -0.6±0.0

 b* 1.7±0.2 1.6±0.2 0.5±0.0 0.4±0.1 -0.4±0.0

 ΔE* 4.9 5.5 7.0 7.0 8.2

Densities (g/cm3)

 Apparent density 0.580 0.545 0.553 0.575 0.551

 Tapped density 0.685 0.618 0.615 0.675 0.650

DE* is the color difference between the ground jatropha seeds and the press cake. – L*, a* and b* values of the ground jat-
ropha seeds were 73.7±0.2, 0.2±0.0 and 4.0±0.1, respectively.



C, respectively, instead of at least 54.5% for other press 

cakes. This could explain the higher hemicellulose con-

tents in press cakes B and C. Finally, water-soluble com-

ponents in the press cakes varied from 13.3 to 16.6% of 

the dry matter, and tended to decrease with the increase 

in residual oil content, i.e., only 13.3% of the dry matter 

for the least deoiled press cake (E) (Table 1).

Press cakes were all darker than ground jatropha 
seeds. Indeed, L* color values for press cakes were 
lower than those of the seeds: 69.4 maximum instead 
of 73.7 for the seeds (Table 1). Nevertheless, a better 
reduction in lipids led to a clarifi cation of the press 
cake, as illustrated by the increase in L* color value: 
from 66.9 for press cake E to 69.4 for press cake A 
(Table 1). This resulted in a decrease in the color differ-
ence (ΔE*) between the ground jatropha seeds and the 

press cake (from 8.2 to 4.9), as its residual oil content 
decreased (from 19.1 to 5.9% of the dry matter). The 
fi ve press cakes were composed of almost spherical 
particles, and particle size distribution of press cakes 
A to E was clearly correlated to their residual oil con-
tents (Figure 1). Indeed, the mean diameter of particles 
in press cakes A to D, increased from 72 to 100 μm as 
their residual oil content increased from 5.9 to 13.3%, 
and it was 238 μm for the least deoiled press cake (E). 
Apparent densities of press cakes were roughly sim-
ilar, and this was also the case for tapped densities: 
between 0.545 and 0.580 g/cm3 and between 0.615 and 
0.685 g/cm3, respectively (Table 1).

Thermogravimetric analysis of press cakes showed 
that all TGA degradation curves under air were almost 
the same (Figure 2). Decomposition temperatures 

Figure 1 Particle size distribution in press cakes A to E.

Figure 2 TGA degradation curves under air and at 5°C/min of press cakes A to E.



observed were always the same. An initial mass loss 
was observed at 100°C corresponding to water evapo-
ration. Moisture content of equilibrated press cakes 
varied from 5.8 to 7.2%, and the mass loss observed in 
TGA curves corresponded to approximately the same 
mass percentage. The thermal degradation of organic 
compounds occurred in two stages. The fi rst (between 
250 and 350°C) led to a loss of more than 45% of the 
dry matter in the sample. A second degradation phe-
nomenon was also observed between 450 and 550°C 
but was associated with a lower mass loss (around 
30% of the dry matter in the sample).

Considering literature data for thermal degradation 
of fi bers, hemicelluloses degrade fi rst, around 270–
330°C, then cellulose, around 320–380°C, and fi nally 
lignins, around 420°C [42–45]. Thermal degradation 
of vegetable proteins from an industrial sunfl ower 
cake has also been observed, above 250°C and below 
350°C [46]. Moreover, the smoke point of jatropha oil 
associated with the onset of its thermal degradation 
is around 250°C, similar to many other vegetable oils 
(e.g., 232°C in the case of refi ned sunfl ower oil).

Consequently, it was reasonable to assume that the 
fi rst thermal degradation stage (250–350°C) could be 
associated with the simultaneous degradation of lip-
ids, proteins, and hemicelluloses. The second, situ-
ated at around 475°C, would then correspond to the 
thermal degradation of cellulose and then to that of 
lignins. At the end of the measurements, the unde-
graded sample represented between 4.6 and 5.7% of 
the test sample mass. The undegraded compounds 
logically corresponded to minerals, whose content in 
press cakes varied from 4.9 to 5.9% of the dry matter 

(Table 1). In conclusion, because no thermal degrada-
tion occurred before 225°C, this confi rmed that the 
three thermo-pressing molding temperatures chosen 
(160, 180 and 200°C for each press cake) were appro-
priate. Indeed, there was no risk of thermal degrada-
tion of organic compounds inside press cakes during 
molding, especially proteins, resulting in the produc-
tion of particleboards with their mechanical properties 
preserved.

Water sensitivity of press cakes was estimated by 
DVS analysis. For all samples, water uptake logi-
cally increased with an increase in relative humidity 
(Figure 3). But, some differences were observed in 
water uptakes between the fi ve press cakes, and this 
could be explained by their different chemical com-
positions. Residual oil content was highest in press 
cake E, resulting in a lower water uptake along the 
relative humidity profi le, and press cake E was thus 
the least water sensitive. Conversely, press cake A was 
the most sensitive to water because its residual oil 
content was the lowest, hence water uptakes at 60% 
RH of press cakes A and E were 7.8 and 6.3%, respec-
tively. Similarly, at 90% RH, they were 17.0 and 12.8%, 
respectively.

The DSC analysis of press cakes was conducted 
on deoiled materials that were equilibrated in a cli-
matic chamber before being tested. The DSC curves 
revealed a signifi cant glass transition phenomenon for 
the fi ve press cakes tested (Figure 4). It was attributed 
to the glass transition of proteins even if other minor 
materials inside press cakes like hemicelluloses could 
also reveal the same phenomenon [47–50]. Moreover, 
the corresponding glass transition temperature was 

Figure 3 DVS curves for press cakes A to E.



mainly independent of the starting material. Indeed, 
the onset temperature varied from 173.9 to 176.4°C, 
and the midpoint value was situated between 179.3 
and 180.9°C (Table 2). When deoiled press cakes 
were dried in a ventilated oven (60°C, 12 h) before 
DSC analysis, a slight increase in the glass transition 
temperature of proteins was systematically observed 
(Table 2). This was characteristic of the plasticizing 
effect of water on jatropha proteins, and such a ten-
dency has been previously observed for sunfl ower 
proteins [28, 31], wheat gluten [51, 52], corn zein [53] 
and soy proteins [54]. Indeed, proteins contain the 
main biopolymers (starch, pectins, hemicelluloses 
and other polysaccharides) polar functions (amides) 
capable of linking the water molecules by hydrogen 
interactions. The presence of water separates the pro-
teins and facilitates their movement, thus improving 
their thermoplastic properties [50]. The thermal and 
rheological properties of proteins are therefore highly 
dependent on the amount of water, resulting in varia-
tions in their glass transition temperature according to 
their hydratation.

3.2  Infl uence of Molding Temperature 
and Press Cake Oil Content on 
Particleboard Mechanical Properties

Press cakes A to E were dried in a ventilated oven 

(60°C, 12 h) before thermo-pressing, and their mois-

ture contents were between 1.0 and 1.4% at molding. 

For all experiments, press cake quantity, pressure 

applied and molding time were 145 g (i.e., 644 mg/

cm2), 297 kgf/cm2 and 90 s, respectively. These val-

ues were similar to those used in previous studies [34, 

35, 37, 38]. For each press cake, three molding tem-

peratures were tested: 160, 180 and 200°C. The fi fteen 

particleboards manufactured using these thermo-

pressing conditions (Table 3) were all cohesive, pro-

teins and fi bers acting respectively as natural binder 

and reinforcing fi llers. Nevertheless, particleboards 

molded at 160°C from press cakes A, D and E (i.e., 

A1, D1 and E1 boards, respectively) were not tested 

mechanically because they were too fragile. Indeed, 

cutting test specimens from these boards was not pos-

sible without breaking them.

Figure 4 DSC curves in pressure-resistant capsules of deoiled press cakes A to E equilibrated in a climatic chamber (60% RH, 

25°C) for three weeks.

Table 2 Glass transition temperatures of proteins in deoiled press cakes A to E equilibrated in 
a climatic chamber (60% RH, 25°C) for three weeks (°C).

Press cake A B C D E

Onset 176.4 (181.8) 176.1 (180.9) 173.9 (179.7) 174.5 (181.0) 175.6 (182.0)

Midpoint 180.1 (186.3) 180.9 (186.4) 179.6 (185.4) 179.3 (185.9) 180.3 (186.2)

The numbers in parentheses correspond to the glass transition temperatures of proteins after drying of deoiled press cakes A 
to E in a ventilated oven (60°C, 12 h).
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For each press cake, thickness of particleboards 
decreased when molding temperature increased 
(Table 3). But, the decrease in board thickness was 
slight between 180 and 200°C molding temperature. 
Density of particleboards increased at the same time. 
It was never more than 1.16 at 160°C, and it was at 
least 1.19 at 180°C and at least 1.21 at 200°C (Table 3). 
Such an evolution could be correlated to the decrease 
observed for each press cake in the particleboard 
moisture content: 7.2–7.4% at 160°C, 6.8–7.4% at 180°C 
and 5.9–6.9% at 200°C. As an example, for press cake 
B, moisture contents in B1, B2 and B3 boards were 7.4, 
6.8 and 5.9%, respectively. For the two highest mold-
ing temperatures, density of particleboards increased 
slightly when residual oil content in the press cake 
decreased (to 1.26 for the B2 board and 1.28 for the 
B3 board, respectively). It resulted in lower mois-
ture contents inside B2 and B3 boards (6.8 and 5.9%, 
respectively). Such an increase in board density was 
probably due to higher protein contents in the press 
cakes poorest in lipids (from 18.9% of the dry mat-
ter in press cake E to 23.8% of the dry matter in press 
cake B) (Table 1), thus confi rming the binding ability 
of proteins inside particleboards. Even if press cake A 
was the poorest in lipids (only 5.9% of the dry mat-
ter), it was an exception, and it generated boards with 
lower densities (1.19 and 1.21, respectively). This was 
not only due to a rather low protein content in press 
cake A (21.3% of the dry matter) compared with press 
cake B, but also to the excessive shear applied to the 
material in the twin-screw extruder for such operat-
ing conditions [22], leading to degradation of proteins 
in press cake A, that adversely affected their binding 
ability in A2 and A3 boards.

Taking into account moisture contents of press cakes 
at molding (1.0–1.4%), the corresponding protein glass 
transition temperature was around 180°C (Table 2). 
Consequently, glass transition did not occur at 160°C 
molding temperature, and thus thermo-pressing con-
sisted essentially of material densifi cation, with solid 
particles being squeezed together. Thus, proteins could 
not act as an effective binder inside boards A1 to E1, 
leading to materials with unsatisfactory mechanical 
properties: only 0.6 MPa fl exural strength at break, 124 
MPa elastic modulus, 0.21 kJ/m2 resilience and 31.1° 
Shore D surface hardness for the C1 board (Table 3).

At 180°C molding temperature, shear, i.e., the pres-
sure, applied at molding plus the increase in molding 
temperature, resulted in the protein glass transition. 
Consequently, proteins were in a rubbery state during 
molding, leading to the fi ber wetting. Therefore, their 
binding effect inside boards A2 to E2 allowed them 
to be much more mechanically resistant than those 
made at 160°C (Table 3). Moreover, their mechanical 
properties were clearly correlated to their densities, an 

increase in board density leading to a more resistant 
particleboard. Indeed, the two densest boards, i.e., 
B2 and C2, were also the most resistant: 3.2–3.3 MPa 
fl exural strength at break, 909–1003 MPa elastic modu-
lus, 0.63–0.71 kJ/m2 resilience and 61.5–61.7° Shore D 
surface hardness (Table 3). Conversely, the least dense 
board, A2, was also the most fragile.

At 200°C molding temperature, glass transition of 
proteins still occurred at molding. Nevertheless, the 
increase in molding temperature led to a less viscous 
protein-based resin, and this contributed undoubt-
edly to improve fi ber wetting. Therefore, the bind-
ing effect of proteins was clearly improved inside 
boards A3 to E3, leading to the most resistant par-
ticleboards in this study (Table 3). For this molding 
temperature, resilience and Shore D surface hardness 
were still correlated to the board density: up to 0.85 
kJ/m2 and 71.6° for the densest board (B3), respec-
tively. However, the Charpy impact strength increase 
was then quite limited (from 0.82 to 0.86 kJ/m2). 
Concerning bending tests, the highest breaking load 
was obtained with press cake A (36.9 N). But, there 
was no positive effect on fl exural strength at break 
(6.9 MPa) because board A3 was also the thickest one 
(5.2 mm); moreover, corresponding elastic modu-
lus was low (only 1509 MPa). For press cakes B to 
E, breaking load increased linearly (from 28.5 to 33.6 
N) with board density (from 1.25 to 1.28). But, since 
board thickness increased at the same time (from 
4.4 to 4.8 mm), all fl exural strength at break values 
were quite similar (between 7.0 and 7.5 MPa), and the 
same was true for elastic modulus (between 2022 and 
2287 MPa).

In conclusion, the best compromise between fl ex-
ural properties (7.2 MPa fl exural strength at break and 
2153 MPa elastic modulus), Charpy impact strength 
(0.85 kJ/m2 resilience) and Shore D surface hardness 
(71.6°) was board B3 (Table 3). Board B3 was also the 
densest board (1.28). Its moisture content was the low-
est one in this study (only 5.9%), indicating that both 
board density and its mechanical properties were sen-
sible with moisture content. Board B3 was obtained at 
200°C molding temperature from a press cake (B) with 
a low residual oil content (7.7% of the dry matter), 
and that was associated with the best R’L1 oil extrac-
tion yield (70.6%) [22]. Press cake B was also the rich-
est in proteins (23.8% of the dry matter) (Table 1) and, 
as effective internal binders, these ensured really good 
material cohesion inside board B3.

3.3 Oil Expression Yields during Molding

For all particleboards, part of the residual oil in the 

press cake was expressed during molding through 

the sidewall vents of the mold, due to the pressure 



applied. Such a phenomenon, i.e., oil expression 

at the same time as molding, had been previously 

observed starting from a cake produced after biore-

fi nery of sunfl ower whole plant in a twin-screw 

extruder [37, 38]. This led to a decrease in residual 

oil content inside particleboards compared with 

that in the corresponding press cake (up to 2.8% of 

the dry matter in the case of board D3 instead of 

13.3% in press cake D), and to an increase in total oil 

yields (up to 95.4% for R
LT

 in the case of board D3) 

(Table 4).

Apart from particleboards from press cake A, oil 
expression yield during molding increased with 
increasing molding temperature. This could be 
explained by a decrease in viscosity of jatropha oil at 
higher temperatures, thus it was easier for the oil to 
escape from the mold. As an example, for press cake 
B that corresponded to the highest R’L1 oil extrac-
tion yield in the twin-screw extruder (70.6%) [22], 
residual oil content decreased from 7.7% of the dry 
matter in the press cake to 6.2 and 5.3% of the dry 
matter in boards B1 and B2, respectively (Table 4). 
And, it was only 4.2% of the dry matter in board 
B3, the optimal for mechanical properties. Thus, 

oil expression yield during molding relative to the 
residual oil contained in the press cake (RL2), logi-
cally increased with increasing molding tempera-
ture: 26.9, 36.8 and 50.0% for boards B1, B2 and B3, 
respectively. This also led to a slight increase in the 
R’LT total oil yield: 74.7, 76.2 and 78.1% for boards B1, 
B2 and B3, respectively. Furthermore, R’LT total oil 
yield was highest for board B3 (78.1%), meaning that 
the study’s optimal board for mechanical properties 
was also associated with the best oil extraction effi -
ciency. At the same time, contents of other constitu-
ents in particleboards, apart from lignins, logically 
increased with increasing molding temperature, due 
to oil loss during molding (Table 5). As an example, 
protein contents in boards B1, B2 and B3 were 24.5, 
24.9 and 25.5% of the dry matter, respectively, instead 
of 23.8% of the dry matter in press cake B. Similarly, 
cellulose contents in boards B1, B2 and B3 were 42.8, 
43.3 and 43.7% of the dry matter, respectively, instead 
of 40.8% of the dry matter in press cake B. Lastly, the 
moisture content of equilibrated particleboards from 
press cake B decreased with the increase in molding 
temperature and so with the increases in board den-
sity and mechanical properties. Indeed, it was 7.4% 

Table 4 Quantification of the oil expressed during molding of the particleboards.

Particleboard B1 C1 A2 B2 C2 D2 E2 A3 B3 C3 D3 E3

mPB (g) 142.4 144.7 145.2 142.9 140.6 135.5 126.4 145.6 140.3 137.8 130.7 124.0

LPB (% dry 
matter)

6.2±0.0 7.2±0.0 3.7±0.1 5.3±0.0 5.3±0.3 5.1±0.2 3.4±0.2 4.0±0.1 4.2±0.0 3.8±0.0 2.8±0.2 3.4±0.1

RL2 (%) 26.9±0.5 24.8±0.4 40.2±1.4 36.8±0.3 45.9±1.5 66.2±1.0 85.2±1.0 36.0±0.9 50.0±0.2 61.5±0.0 82.4±1.3 85.7±0.6

R’L2 (%) 4.0 4.4 4.2 5.5 8.2 17.3 34.8 3.8 7.5 10.9 21.6 35.1

RLT (%) 89.1 86.6 93.8 90.5 90.4 91.2 94.0 93.3 92.5 93.1 95.4 94.2

R’LT (%) 74.7 61.9 57.8 76.2 65.6 63.6 64.5 57.3 78.1 68.4 67.8 64.7

Table 5 Chemical composition of particleboards from press 
cake B (% of the dry matter).

Particleboard B1 B2 B3

Minerals 6.0±0.0 6.1±0.0 6.3±0.1

Lipids 6.2±0.0 5.3±0.0 4.2±0.0

Proteins 24.5±0.1 24.9±0.2 25.5±0.1

Cellulose 42.8±0.1 43.3±0.1 43.7±0.2

Hemicelluloses 14.7±0.0 18.4±0.2 21.3±0.1

Lignins 3.0±0.0 2.9±0.0 0.2±0.0

Water-soluble components 15.6±0.0 16.0±0.1 17.2±0.0



for board B1, 6.8% for board B2 and only 5.9% for 
board B3 (Table 3), and the same tendency was also 
observed with particleboards from the four other 
press cakes (Table 3). This was due to the increase in 
particleboard density with increasing molding tem-
perature (Table 3). Indeed, during climatic chamber 
conditioning of particleboards, water uptake was 
less for denser boards, due to their lower surface 
porosity.

Oil expression during molding also led to the light-
ening of particleboards compared to the correspond-
ing press cake, as illustrated by the increase in the L* 
color value for all boards tested (Table 6). And, as pre-
viously observed for the lipid levels, lightening of par-
ticleboards was usually more pronounced at higher 
molding temperatures. As an example, in the case of 
press cake B, the L* color value was 70.1 for board B3 
instead of only 68.8–68.9 for boards B1 and B2. This 
usually resulted in an increase in the color difference 
(ΔE*) between the press cake and the particleboard 
with increasing molding temperature. Thus, in the 
case of press cake B, ΔE* was only 0.1 for board B1, 
and it reached 0.7 and especially 1.9 for boards B2 and 
B3, respectively (Table 6).

Even if the pressure applied during molding led to 
partial oil expression, particleboards still contained 
residual oil. As an example, for the 200°C molding 
temperature that led to the most mechanically resis-
tant panels (Table 3) and to the best oil expression 
yields during molding (Table 4), residual oil content 
inside particleboards was between 2.8 and 4.2% of the 
dry matter. Thus, in spite of their global hydrophilic 
character, it is reasonable to assume that residual oil in 
particleboards will contribute slightly to making them 
less water-sensitive and more durable than deoiled 
thermo-pressed agromaterials.

Oil expressed during molding could be collected. 
Firstly, its fi ltration would eliminate small solid par-
ticles driven through the vents of the mold during 
thermo-pressing, and this could then be supplemented 
by a refi ning step. Two applications could be consid-
ered for such refi ned oil: its use as a biolubricant or its 
transformation into biodiesel after transesterifi cation 

of triglycerides with methanol to produce fatty acid 
methyl esters (FAME) [6].

4 CONCLUSION

New renewable and biodegradable particleboards 

were manufactured by thermo-pressing from press 

cakes produced after extraction of oil from jatropha 

seeds using a twin-screw extruder. Particleboards 

were all cohesive, proteins and lignocellulosic fibers 

acting respectively as binder and reinforcing fillers. 

The molding temperature was the factor that most 

affected mechanical properties (fl exural properties, 

Charpy impact strength and Shore D surface hard-

ness) of particleboards obtained. A 200°C molding 

temperature was required to give glass transition of 

proteins during molding and especially to an effec-

tive wetting of the fi bers inside the boards. The best 

compromise between fl exural properties (7.2 MPa 

fl exural strength at break and 2153 MPa elastic mod-

ulus), Charpy impact strength (0.85 kJ/m2) and Shore 

D surface hardness (71.6°) was a board molded at 

200°C from a press cake with low residual oil con-

tent (7.7%). With these mechanical properties, such a 

particleboard would be usable as an interlayer sheet 

for pallets, for the manufacture of containers or fur-

niture, or in the building trade (fl oor underlayers, 

interior partitions or ceiling tiles). Moreover, thermo-

pressing was not only a molding operation to manu-

facture new renewable and biodegradable particle-

boards. It also increased the oil extraction effi ciency 

(from 70.6% after extrusion to a maximum of 78.1% 

after thermo-pressing in the case of the board with 

optimal mechanical properties).
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Table 6 Color of the particleboards in the CIE L*a*b* referential, and color differences between the press cake (A to 
E) and the particleboards produced from them.

Particleboard B1 C1 A2 B2 C2 D2 E2 A3 B3 C3 D3 E3

L* 68.9±0.0 68.7±0.2 71.4±0.2 68.8±0.2 68.4±0.0 70.9±0.0 71.4±0.1 72.6±0.2 70.1±0.1 71.0±0.2 69.9±0.2 70.9±0.1

a* 0.4±0.0 0.8±0.1 0.6±0.1 1.1±0.1 0.5±0.0 0.4±0.0 0.6±0.0 0.8±0.1 1.3±0.0 1.3±0.1 0.1±0.1 0.3±0.0

b* 1.6±0.0 s1.5±0.2 3.4±0.1 1.5±0.1 1.2±0.0 3.0±0.0 3.5±0.1 4.4±0.2 2.5±0.1 3.4±0.1 2.1±0.2 3.0±0.1

ΔE* 0.1 1.7 2.6 0.7 1.2 4.2 6.1 4.2 1.9 4.6 2.8 5.4
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