228 research outputs found
The DarkSide experiment
DarkSide is a dark matter direct search experiment at Laboratori Nazionali del Gran Sasso (LNGS). DarkSide is based on the detection of rare nuclear recoils possibly induced by hypothetical dark matter particles, which are supposed to be neutral, massive (m>10GeV) and weakly interactive (WIMP). The dark matter detector is a two-phase time projection chamber (TPC) filled with ultra-pure liquid argon. The TPC is placed inside a muon and a neutron active vetoes to suppress the background. Using argon as active target has many advantages, the key features are the strong discriminant power between nuclear and electron recoils, the spatial reconstruction and easy scalability to multi-tons size. At the moment DarkSide-50 is filled with ultra-pure argon, extracted from underground sources, and from April 2015 it is taking data in its final configuration. When combined with the preceding search with an atmospheric argon target, it is possible to set a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 2.0×10−44 cm2 for a WIMP mass of 100GeV/c2. The next phase of the experiment, DarkSide-20k, will be the construction of a new detector with an active mass of ∼ 20 tons
Acute atrial ischemia associates with early but not late new-onset atrial fibrillation in STEMI patients treated with primary PCI: relationship with in-hospital outcomes
Abstract
Funding Acknowledgements
Type of funding sources: None.
OnBehalf
N/A
Background. New-onset atrial fibrillation (NOAF) is known to be a common complication in STEMI patients undergoing primary percutaneous coronary intervention (PCI), which is associated with a negative short- and long-term prognosis. Recently, two distinct phenotypes of NOAF have been described, namely early (EAF) and late NOAF (LAF). However, whether EAF and LAF recognize different pathogenetic mechanisms is unknown.
Purpose. To investigate atrial branches occlusion and EAF or LAF onset in STEMI patients undergoing primary PCI.
Methods. Retrospective cohort study including 155 STEMI patients. Patients were divided into 3 groups: sinus rhythm (SR), EAF or LAF. Clinical characteristics, angiographic features including occlusion of atrial branches, namely ramus ostia cavae superioris (ROCS), atrio-ventricular node artery (AVNA), right intermediate atrial artery (RIAA) and left intermediate atrial artery (LIAA), were assessed. We also investigated in-hospital complications, death, and a composite of major post-NOAF adverse events (AEs) including cardiogenic shock, acute pulmonary edema, sustained ventricular tachycardia and ventricular fibrillation.
Results. Mean age was 63.8 ± 11.9 years; 78.7% of men. NOAF was detected in 22 (14.2%) patients: 10 (6.4%) EAF and 12 LAF (7.7%). Compared to EAF, LAF patients were older (p = 0.013), with higher GRACE risk score (p = 0.014) and Killip class (p = 0.015), depressed ejection fraction (p = 0.007), elevated filling pressures (p = 0.029), higher c-reactive protein (p = 0.014) and more TIMI flow <3 (p = 0.015). As shown in Figure 1, EAF was associated with higher prevalence of occluded ROCS (p = 0.010), AVNA (p = 0.005) and RIAA (p < 0.001), compared to SR. Moreover, EAF patients had more frequently ≥2 diseased atrial branches than SR (19.5%, p < 0.001) and LAF (25%, p < 0.030) patients. In LAF patients, a higher incidence of pre-PCI cardiogenic shock, post-PCI AEs (p = 0.019 vs SR; p = 0.029 vs EAF) and death (p = 0.004 vs SR) was found.
Conclusions. The occlusion of atrial branches is associated with early but not late NOAF following STEMI. LAF patients had worse in-hospital AEs and mortality. Abstract Figure
Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells
Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general. Using biochemical approaches and superresolution microscopy, we show that estrogen drives membrane ERα into endosomes in breast cancer cells and that its fate is determined by the presence of fibronectin (FN) in the extracellular matrix; it is trafficked to lysosomes in the absence of FN and avoids the lysosomal compartment in its presence. In this context, FN prolongs ERα half-life and strengthens its transcriptional activity. We show that ERα is associated with β1-integrin at the membrane, and this integrin follows the same endocytosis and subcellular trafficking pathway triggered by estrogen. Moreover, ERα+ vesicles are present within human breast tissues, and colocalization with β1-integrin is detected primarily in tumors. Our work unravels a key, clinically relevant mechanism of microenvironmental regulation of ERα signaling.Fil: Sampayo, Rocío Guadalupe. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Toscani, Andrés Martin. Universidad Nacional de Luján; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rubashkin, Matthew G.. University of California; Estados UnidosFil: Thi, Kate. Lawrence Berkeley National Laboratory; Estados UnidosFil: Masullo, Luciano Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Violi, Ianina Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Lakins, Jonathon N.. University of California; Estados UnidosFil: Caceres, Alfredo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Hines, William C.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Coluccio Leskow, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de Luján; ArgentinaFil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Chialvo, Dante Renato. Universidad de Buenos Aires; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; ArgentinaFil: Bissell, Mina J.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Weaver, Valerie M.. University of California; Estados UnidosFil: Simian, Marina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentin
Engineered swift equilibration of a Brownian particle
A fundamental and intrinsic property of any device or natural system is its
relaxation time relax, which is the time it takes to return to equilibrium
after the sudden change of a control parameter [1]. Reducing relax , is
frequently necessary, and is often obtained by a complex feedback process. To
overcome the limitations of such an approach, alternative methods based on
driving have been recently demonstrated [2, 3], for isolated quantum and
classical systems [4--9]. Their extension to open systems in contact with a
thermostat is a stumbling block for applications. Here, we design a
protocol,named Engineered Swift Equilibration (ESE), that shortcuts
time-consuming relaxations, and we apply it to a Brownian particle trapped in
an optical potential whose properties can be controlled in time. We implement
the process experimentally, showing that it allows the system to reach
equilibrium times faster than the natural equilibration rate. We also estimate
the increase of the dissipated energy needed to get such a time reduction. The
method paves the way for applications in micro and nano devices, where the
reduction of operation time represents as substantial a challenge as
miniaturization [10]. The concepts of equilibrium and of transformations from
an equilibrium state to another, are cornerstones of thermodynamics. A textbook
illustration is provided by the expansion of a gas, starting at equilibrium and
expanding to reach a new equilibrium in a larger vessel. This operation can be
performed either very slowly by a piston, without dissipating energy into the
environment, or alternatively quickly, letting the piston freely move to reach
the new volume
Unraveling the Effects of Carotenoids Accumulation in Human Papillary Thyroid Carcinoma
Among the thyroid cancers, papillary thyroid cancer (PTC) accounts for 90% of the cases. In addition to the necessity to identify new targets for PTC treatment, early diagnosis and management are highly demanded. Previous data indicated that the multivariate statistical analysis of the Raman spectra allows the discrimination of healthy tissues from PTC ones; this is characterized by bands typical of carotenoids. Here, we dissected the molecular effects of carotenoid accumulation in PTC patients by analyzing whether they were required to provide increased retinoic acid (RA) synthesis and signaling and/or to sustain antioxidant functions. HPLC analysis revealed the lack of a significant difference in the overall content of carotenoids. For this reason, we wondered whether the carotenoid accumulation in PTC patients could be related to vitamin A derivative retinoic acid (RA) biosynthesis and, consequently, the RA-related pathway activation. The transcriptomic analysis performed using a dedicated PCR array revealed a significant downregulation of RA-related pathways in PTCs, suggesting that the carotenoid accumulation in PTC could be related to a lower metabolic conversion into RA compared to that of healthy tissues. In addition, the gene expression profile of 474 PTC cases previously published in the framework of the Cancer Genome Atlas (TGCA) project was examined by hierarchical clustering and heatmap analyses. This metanalysis study indicated that the RA-related pathways resulted in being significantly downregulated in PTCs and being associated with the follicular variant of PTC (FV-PTC). To assess whether the possible fate of the carotenoids accumulated in PTCs is associated with the oxidative stress response, the expression of enzymes involved in ROS scavenging was checked. An increased oxidative stress status and a reduced antioxidant defense response were observed in PTCs compared to matched healthy thyroids; this was possibly associated with the prooxidant effects of high levels of carotenoids. Finally, the DepMap datasets were used to profile the levels of 225 metabolites in 12 thyroid cancer cell lines. The results obtained suggested that the high carotenoid content in PTCs correlates with tryptophan metabolism. This pilot provided novel possible markers and possible therapeutic targets for PTC diagnosis and therapy. For the future, a larger study including a higher number of PTC patients will be necessary to further validate the molecular data reported here
INVESTIGATING THE SEISMIC RESPONSE OF URM WALLS WITH IRREGULAR OPENING LAYOUT THROUGH DIFFERENT MODELING APPROACHES
The façade and internal walls of unreinforced masonry (URM) buildings often present an irregular opening layout, due to architectural reasons or modifications to the structure, which make the expected seismic damage pattern less predictable a priori. Therefore, the discretization of the walls in structural components is not standardized, conversely to cases with a regular opening layout for which the available modeling methods are corroborated by seismic damage surveys reporting recurrent failure patterns. The structural component discretization is a relevant step for the code-conforming seismic assessment, typically based on comparing the internal forces and drifts of each component to strength criteria and drift thresholds. Therefore, the lack of well-established approaches can significantly influence the assessment. The issue is even more evident when the structural components must be identified a priori in the modeling stage, namely for equivalent frame models. The applicability of available methods for discretization of URM walls with irregular opening layout has been already investigated in literature, but a conclusive judgment requires further studies. In this context, this paper presents an overview of the preliminary results addressing the numerical modeling of this type of walls within the framework of the DPC-ReLUIS 2022-2024 project (Subtask 10.3), funded by the Italian Department of Civil Protection. The Subtask aims to propose consensus-based recommendations for researchers and practitioners which can contribute to harmonize the use of different modeling approaches. Seven research groups are involved in the research, adopting different modeling approaches and computer codes, but similar assumptions and the same analysis method (pushover) are used. The benchmark URM structure illustrated in the paper is a two-story wall from which four configurations with increasing irregularity of opening layout were derived. The results of four modeling approached are presented. Three of them reproduce the mechanical response of masonry at the material scale by means of FE models implemented in OpenSees, DIANA and Abaqus software, while the remaining approach describes the mechanical response of masonry at the macro-element scale in 3DMacro software. Results were compared in terms of capacity curves, predicted failure mechanisms and evolution of internal forces in piers. The adoption of consistent assumptions among the different approaches led to an overall agreement of predictions at both wall and pier scales, particularly in terms of damage pattern with higher concentration of damage at the ground story. Despite that, differences on the pushover curves have been highlighted. They are mainly due to some deviations of the internal forces in squat piers deriving from a complex load flow in these elements
Investigating the seismic response of URM walls with irregular opening layout through different modeling approaches
TThe façade and internal walls of unreinforced masonry (URM) buildings often present an
irregular opening layout, due to architectural reasons or modifications to the structure, which
make the expected seismic damage pattern less predictable a priori. Therefore, the
discretization of the walls in structural components is not standardized, conversely to cases
with a regular opening layout for which the available modeling methods are corroborated by
seismic damage surveys reporting recurrent failure patterns. The structural component
discretization is a relevant step for the code-conforming seismic assessment, typically based
on comparing the internal forces and drifts of each component to strength criteria and drift
thresholds. Therefore, the lack of well-established approaches can significantly influence the
assessment. The issue is even more evident when the structural components must be identified
a priori in the modeling stage, namely for equivalent frame models. The applicability of
available methods for discretization of URM walls with irregular opening layout has been
already investigated in literature, but a conclusive judgment requires further studies.
In this context, this paper presents an overview of the preliminary results addressing the
numerical modeling of this type of walls within the framework of the DPC-ReLUIS 2022-2024
project (Subtask 10.3), funded by the Italian Department of Civil Protection. The Subtask
aims to propose consensus-based recommendations for researchers and practitioners which
can contribute to harmonize the use of different modeling approaches. Seven research groups
are involved in the research, adopting different modeling approaches and computer codes,
but similar assumptions and the same analysis method (pushover) are used. The benchmark
URM structure illustrated in the paper is a two-story wall from which four configurations
with increasing irregularity of opening layout were derived. The results of four modeling
approached are presented. Three of them reproduce the mechanical response of masonry at
the material scale by means of FE models implemented in OpenSees, DIANA and Abaqus
software, while the remaining approach describes the mechanical response of masonry at the
macro-element scale in 3DMacro software. Results were compared in terms of capacity
curves, predicted failure mechanisms and evolution of internal forces in piers. The adoption
of consistent assumptions among the different approaches led to an overall agreement of
predictions at both wall and pier scales, particularly in terms of damage pattern with higher
concentration of damage at the ground story. Despite that, differences on the pushover curves
have been highlighted. They are mainly due to some deviations of the internal forces in squat
piers deriving from a complex load flow in these elements.DPC - Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri(LA/P/0112/2020
- …