48 research outputs found

    Cosmological Parameter Estimation: Method

    Get PDF
    CMB anisotropy data could put powerful constraints on theories of the evolution of our Universe. Using the observations of the large number of CMB experiments, many studies have put constraints on cosmological parameters assuming different frameworks. Assuming for example inflationary paradigm, one can compute the confidence intervals on the different components of the energy densities, or the age of the Universe, inferred by the current set of CMB observations. The aim of this note is to present some of the available methods to derive the cosmological parameters with their confidence intervals from the CMB data, as well as some practical issues to investigate large number of parameters

    Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa

    Get PDF
    Photobiomodulation (PBM) by far-red (FR) to near-infrared (NIR) light has been demonstrated to restore the function of damaged mitochondria, increase the production of cytoprotective factors and prevent cell death. Our laboratory has shown that FR PBM improves functional and structural outcomes in animal models of retinal injury and retinal degenerative disease. The current study tested the hypothesis that a brief course of NIR (830 nm) PBM would preserve mitochondrial metabolic state and attenuate photoreceptor loss in a model of retinitis pigmentosa, the P23H transgenic rat. P23H rat pups were treated with 830 nm light (180 s; 25 mW/cm2; 4.5 J/cm2) using a light-emitting diode array (Quantum Devices, Barneveld, WI) from postnatal day (p) 10 to p25. Sham-treated rats were restrained, but not treated with 830 nm light. Retinal metabolic state, function and morphology were assessed at p30 by measurement of mitochondrial redox (NADH/FAD) state by 3D optical cryo-imaging, electroretinography (ERG), spectral-domain optical coherence tomography (SD-OCT), and histomorphometry. PBM preserved retinal metabolic state, retinal function, and retinal morphology in PBM-treated animals compared to the sham-treated group. PBM protected against the disruption of the oxidation state of the mitochondrial respiratory chain observed in sham-treated animals. Scotopic ERG responses over a range of flash intensities were significantly greater in PBM-treated rats compared to sham controls. SD-OCT studies and histological assessment showed that PBM preserved the structural integrity of the retina. These findings demonstrate for the first time a direct effect of NIR PBM on retinal mitochondrial redox status in a well-established model of retinal disease. They show that chronic proteotoxic stress disrupts retinal bioenergetics resulting in mitochondrial dysfunction, and retinal degeneration and that therapies normalizing mitochondrial metabolism have considerable potential for the treatment of retinal degenerative disease

    MAXIPOL: Cosmic Microwave Background Polarimetry Using a Rotating Half-Wave Plate

    Full text link
    We discuss MAXIPOL, a bolometric balloon-borne experiment designed to measure the E-mode polarization of the cosmic microwave background radiation (CMB). MAXIPOL is the first bolometric CMB experiment to observe the sky using rapid polarization modulation. To build MAXIPOL, the CMB temperature anisotropy experiment MAXIMA was retrofitted with a rotating half-wave plate and a stationary analyzer. We describe the instrument, the observations, the calibration and the reduction of data collected with twelve polarimeters operating at 140 GHz and with a FWHM beam size of 10 arcmin. We present maps of the Q and U Stokes parameters of an 8 deg^2 region of the sky near the star Beta Ursae Minoris. The power spectra computed from these maps give weak evidence for an EE signal. The maximum-likelihood amplitude of l(l+1)C^{EE}_{l}/(2 pi) is 55_{-45}^{+51} uK^2 (68%), and the likelihood function is asymmetric and skewed positive such that with a uniform prior the probability that the amplitude is positive is 96%. This result is consistent with the expected concordance LCDM amplitude of 14 uK^2. The maximum likelihood amplitudes for l(l+1)C^{BB}_{l}/(2 pi) and (+1)CEB/2π\ell(\ell+1)C^{EB}_{\ell}/2\pi are -31_{-19}^{+31} and 18_{-34}^{+27} uK^2 (68%), respectively, which are consistent with zero. All of the results are for one bin in the range 151 < l < 693. Tests revealed no residual systematic errors in the time or map domain. A comprehensive discussion of the analysis of the data is presented in a companion paper.Comment: 19 pages, 11 figures, 2 tables, submitted to Ap

    The impact of cluster mergers on arc statistics

    Full text link
    We study the impact of merger events on the strong lensing properties of galaxy clusters. Previous lensing simulations were not able to resolve dynamical time scales of cluster lenses, which arise on time scales which are of order a Gyr. In this case study, we first describe qualitatively with an analytic model how some of the lensing properties of clusters are expected to change during merging events. We then analyse a numerically simulated lens model for the variation in its efficiency for producing both tangential and radial arcs while a massive substructure falls onto the main cluster body. We find that: (1) during the merger, the shape of the critical lines and caustics changes substantially; (2) the lensing cross sections for long and thin arcs can grow by one order of magnitude and reach their maxima when the extent of the critical curves is largest; (3) the cross section for radial arcs also grows, but the cluster can efficiently produce this kind of arcs only while the merging substructure crosses the main cluster centre; (4) while the arc cross sections pass through their maxima as the merger proceeds, the cluster's X-ray emission increases by a factor of 5\sim5. Thus, we conclude that accounting for these dynamical processes is very important for arc statistics studies. In particular, they may provide a possible explanation for the arc statistics problem.Comment: 16 pages, submitted to MNRAS, revised version after referee' Comments. Gzipped file including full resolution images can be downloaded at http://dipastro.pd.astro.it/~cosmo/massimo/high-res-images.tar.g

    Arc Statistics in Cosmological Models with Dark Energy

    Full text link
    We investigate how the probability of the formation of giant arcs in galaxy clusters is expected to change in cosmological models dominated by dark energy with an equation of state p=w rho c^2 compared to cosmological-constant or open models. To do so, we use a simple analytic model for arc cross sections based on the Navarro-Frenk-White density profile which we demonstrate reproduces essential features of numerically determined arc cross sections. Since analytic lens models are known to be inadequate for accurate absolute quantifications of arc probabilities, we use them only for studying changes relative to cosmological-constant models. Our main results are (1) the order of magnitude difference between the arc probabilities in low density, spatially flat and open CDM models found numerically is reproduced by our analytic model, and (2) dark-energy cosmologies with w>-1 increase the arc optical depth by at most a factor of two and are thus unlikely to reconcile arc statistics with spatially flat cosmological models with low matter density.Comment: 8 pages, accepted by A&

    Frequentist Estimation of Cosmological Parameters from the MAXIMA-1 Cosmic Microwave Background Anisotropy Data

    Get PDF
    We use a frequentist statistical approach to set confidence intervals on the values of cosmological parameters using the MAXIMA-1 and COBE measurements of the angular power spectrum of the cosmic microwave background. We define a Δχ2\Delta \chi^{2} statistic, simulate the measurements of MAXIMA-1 and COBE, determine the probability distribution of the statistic, and use it and the data to set confidence intervals on several cosmological parameters. We compare the frequentist confidence intervals to Bayesian credible regions. The frequentist and Bayesian approaches give best estimates for the parameters that agree within 15%, and confidence interval-widths that agree within 30%. The results also suggest that a frequentist analysis gives slightly broader confidence intervals than a Bayesian analysis. The frequentist analysis gives values of \Omega=0.89{+0.26\atop -0.19}, \Omega_{\rm B}h^2=0.026{+0.020\atop -0.011} and n=1.02{+0.31\atop -0.10}, and the Bayesian analysis gives values of \Omega=0.98{+0.14\atop -0.19}, \Omega_{\rm B}h^2=0.0.029{+0.015\atop-0.010}, and n=1.18+0.100.23n=1.18{+0.10\atop -0.23}, all at the 95% confidence level.Comment: 10 pages, 9 Postscript figures, changes made to reflect published versio

    Acceleration of the universe, vacuum metamorphosis, and the large-time asymptotic form of the heat kernel

    Full text link
    We investigate the possibility that the late acceleration observed in the rate of expansion of the universe is due to vacuum quantum effects arising in curved spacetime. The theoretical basis of the vacuum cold dark matter (VCDM), or vacuum metamorphosis, cosmological model of Parker and Raval is revisited and improved. We show, by means of a manifestly nonperturbative approach, how the infrared behavior of the propagator (related to the large-time asymptotic form of the heat kernel) of a free scalar field in curved spacetime causes the vacuum expectation value of its energy-momentum tensor to exhibit a resonance effect when the scalar curvature R of the spacetime reaches a particular value related to the mass of the field. we show that the back reaction caused by this resonance drives the universe through a transition to an accelerating expansion phase, very much in the same way as originally proposed by Parker and Raval. Our analysis includes higher derivatives that were neglected in the earlier analysis, and takes into account the possible runaway solutions that can follow from these higher-derivative terms. We find that the runaway solutions do not occur if the universe was described by the usual classical FRW solution prior to the growth of vacuum energy-density and negative pressure (i.e., vacuum metamorphosis) that causes the transition to an accelerating expansion of the universe in this theory.Comment: 33 pages, 3 figures. Submitted to Physical Review D15 (Dec 23, 2003). v2: 1 reference added. No other change

    The MAXIMA Experiment: Latest Results and Consistency Tests

    Get PDF
    The MAXIMA cosmic microwave background anisotropy experiment had a significant impact on cosmology. Results from the program have played a significant role in determining the geometry of the universe, given strong supporting evidence to inflation, and, in combination with other astrophysical data, showed that the universe is filled with dark matter and energy. We present a subset of the internal consistency checks that were carried out on the MAXIMA-1 data prior to their release, which demonstrate that systematics errors were much smaller than statistical errors. We also discuss the MAXIMA-2 flight and data, compare the maps of MAXIMA-1 and -2 in areas where they overlap and show that the two independent experiments confirm each other. All of these results demonstrate that MAXIMA mapped the cosmic microwave background anisotropy with high accuracyComment: to be published in C.R. Physique, 2003, (Academie des Science), 14 pages, figures embedded, a version with high quality figures is available from http://cosmology.berkeley.edu/maxima/comp_publications.htm

    MAXIPOL: a balloon-borne experiment for measuring the polarization anisotropy of the cosmic microwave background radiation

    No full text
    We discuss MAXIPOL, a bolometric balloon-borne experiment designed to measure the E-mode polarization anisotropy of the cosmic microwave background radiation (CMB) on angular scales of 10 arcmin to 2 degrees. MAXIPOL is the first CMB experiment to collect data with a polarimeter that utilizes a rotating half-wave plate and fixed wire-grid polarizer. We present the instrument design, elaborate on the polarimeter strategy and show the instrument performance during flight with some time domain data. Our primary data set was collected during a 26 hour turnaround flight that was launched from the National Scientific Ballooning Facility in Ft. Sumner, New Mexico in May 2003. During this flight five regions of the sky were mapped. Data analysis is in progress

    Cosmological implications of the MAXIMA-I high resolution Cosmic Microwave Background anisotropy measurement

    Get PDF
    We discuss the cosmological implications of the new constraints on the power spectrum of the Cosmic Microwave Background Anisotropy derived from a new high resolution analysis of the MAXIMA-1 measurement (Lee et al. 2001). The power spectrum shows excess power at 860\ell \sim 860 over the average level of power at 411785.411 \le\ell \le 785. This excess is statistically significant on the 95% confidence level. Such a feature is consistent with the presence of a third acoustic peak, which is a generic prediction of inflation-based models. The height and the position of the excess power match the predictions of a family of inflationary models with cosmological parameters that are fixed to fit the CMB data previously provided by BOOMERANG-LDB and MAXIMA-1 experiments (e.g., Jaffe et al.2001). Our results, therefore, lend support for inflationary models and more generally for the dominance of coherent perturbations in the structure formation of the Universe. At the same time, they seem to disfavor a large variety of the non-standard (but still inflation-based) models that have been proposed to improve the quality of fits to the CMB data and consistency with other cosmological observables. Within standard inflationary models, our results combined with the COBE-DMR data give best fit values and 95% confidence limits for the baryon density, Ωbh20.0325±0.0125\Omega_b h^2\simeq 0.0325{\pm 0.0125}, and the total density, Ω=0.9+0.180.16\Omega=0.9{+0.18\atop -0.16}. The primordial spectrum slope (nsn_s) and the optical depth to the last scattering surface (τc\tau_c) are found to be degenerate and to obey the relation ns0.46τc+(0.99±0.14)n_s \simeq 0.46 \tau_c + (0.99 \pm 0.14), for τc0.5\tau_c \le 0.5 (all 95% c.l.)
    corecore