103 research outputs found

    New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools: II. SDSS DR7 vs UKIDSS LAS DR6, SDSS DR7 vs UKIDSS LAS DR8, SDSS DR9 vs UKIDSS LAS DR10, and SDSS DR7 vs 2MASS

    Full text link
    We aim at developing an efficient method to search for late-type subdwarfs (metal-depleted dwarfs with spectral types >M5) to improve the current statistics. Our objectives are: improve our knowledge of metal-poor low-mass dwarfs, bridge the gap between the late-M and L types, determine their surface density, and understand the impact of metallicity on the stellar and substellar mass function. We carried out a search cross-matching the SDSS, 2MASS, and UKIDSS using STILTS, Aladin, and Topcat. We considered different photometric and proper motion criteria for our selection. We identified 29 and 71 late-type subdwarf candidates in each cross-correlation over 8826 and 3679 square degrees, respectively. We obtained low-resolution optical spectra for 71 of our candidates with GTC, NOT, and VLT and retrieved spectra for 30 candidates from the SDSS spectroscopic database. We classified 92 candidates based on 101 optical spectra using two methods: spectral indices and comparison with templates of known subdwarfs. We confirmed 86% and 94% of the candidates as late-type subdwarfs from the SDSS vs 2MASS and SDSS vs UKIDSS cross-matches, respectively. These subdwarfs have spectral types ranging between M5 and L0.5 and SDSS magnitudes in the r=19.4-23.3 mag range. Our new late-type M discoveries include 49 subdwarfs, 25 extreme subdwarfs, six ultrasubdwarfs, one subdwarf/extreme subdwarf, and two dwarfs/subdwarfs. We derived a surface density of late-type subdwarfs of 0.0400.007+0.012^{+0.012}_{-0.007} per square degree in the SDSS DR7 vs UKIDSS LAS DR10 cross-match. We also checked the AllWISE photometry of known and new subdwarfs and found that mid-infrared colours of M subdwarfs do not appear to differ from their solar-metallicity counterparts of similar spectral types. However, the J-W2 and J-W1 colours are bluer for lower metallicity dwarfs. (abstract strongly abridged)Comment: 28 pages, 4 Tables, 10 figures, 1 appendix. Accepted to A&A. Photometry and spectra available in a dedicated archive on late-type subdwarfs at http://svo2.cab.inta-csic.es/vocats/ltsa

    TESELA: a new Virtual Observatory tool to determine blank fields for astronomical observations

    Get PDF
    The observation of blank fields, regions of the sky devoid of stars down to a given threshold magnitude, constitutes one of the typical important calibration procedures required for the proper reduction of astronomical data obtained in imaging mode. This work describes a method, based on the use of the Delaunay triangulation on the surface of a sphere, that allows the easy generation of blank fields catalogues. In addition to that, a new tool named TESELA, accessible through the WEB, has been created to facilitate the user to retrieve, and visualise using the VO-tool Aladin, the blank fields available near a given position in the sky.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society. 11 pages, 10 figures. Related Web tool accessible at http://sdc.cab.inta-csic.es/tesel

    Spatial Analysis of Metal-PLGA Hybrid Microstructures Using 3D SERS Imaging

    Get PDF
    The incorporation of gold nanoparticles in biodegradable polymeric nanostructures with controlled shape and size is of interest toward different applications in nanomedicine. Properties of the polymer such as drug loading and antibody functionalization can be combined with the plasmonic properties of gold nanoparticles, to yield advanced hybrid materials. This study presents a new way to synthesize multicompartmental microgels, fibers, or cylinders, with embedded anisotropic gold nanoparticles. Gold nanoparticles dispersed in an organic solvent can be embedded within the poly(lactic‐co‐glycolic acid) (PLGA) matrix of polymeric microstructures, when prepared via electrohydrodynamic co‐jetting. Prior functionalization of the plasmonic nanoparticles with Raman active molecules allows for imaging of the nanocomposites by surface‐enhanced Raman scattering (SERS) microscopy, thereby revealing nanoparticle distribution and photostability. These exceptionally stable hybrid materials, when used in combination with 3D SERS microscopy, offer new opportunities for bioimaging, in particular when long‐term monitoring is required

    GTC Osiris spectroscopic identification of a faint L subdwarf in the UKIRT Infrared Deep Sky Survey

    Full text link
    We present the discovery of an L subdwarf in 234 square degrees common to the UK Infrared Telescope (UKIRT) Infrared Deep Sky Survey Large Area Survey Data Release 2 and the Sloan Digital Sky Survey Data Release 3. This is the fifth L subdwarf announced to date, the first one identified in the UKIRT Infrared Deep Sky Survey, and the faintest known. The blue optical and near-infrared colors of ULAS J135058.86+081506.8 and its overall spectra energy distribution are similar to the known mid-L subdwarfs. Low-resolution optical (700-1000 nm) spectroscopy with the Optical System for Imaging and low Resolution Integrated Spectroscopy spectrograph on the 10.4 m Gran Telescopio de Canarias reveals that ULAS J135058.86+081506.8 exhibits a strong KI pressure-broadened line at 770 nm and a red slope longward of 800 nm, features characteristics of L-type dwarfs. From direct comparison with the four known L subdwarfs, we estimate its spectral type to be sdL4-sdL6 and derive a distance in the interval 94-170 pc. We provide a rough estimate of the space density for mid-L subdwarfs of 1.5x10^(-4) pc^(-3).Comment: 5 pages, 1 table, 3 figures, published in ApJ Letters (January 2010 issue

    Nd3+-doped lanthanum oxychloride nanocrystals as nanothermometers

    Get PDF
    The development of optical nanothermometers operating in the near-infrared (NIR) is of high relevance toward temperature measurements in biological systems. We propose herein the use of Nd3+-doped lanthanum oxychloride nanocrystals as an efficient system with intense photoluminescence under NIR irradiation in the first biological transparency window and emission in the second biological window with excellent emission stability over time under 808 nm excitation, regardless of Nd3+ concentration, which can be considered as a particular strength of our system. Additionally, surface passivation through overgrowth of an inert LaOCl shell around optically active LaOCl/Nd3+ cores was found to further enhance the photoluminescence intensity and also the lifetime of the 1066 nm, 4F3/2 to 4I11/2 transition, without affecting its (ratiometric) sensitivity toward temperature changes. As required for biological applications, we show that the obtained (initially hydrophobic) nanocrystals can be readily transferred into aqueous solvents with high, long-term stability, through either ligand exchange or encapsulation with an amphiphilic polymer.The authors thank the financial support of the European Research Council (ERC-AdG-2017 787510, ERC-CoG-2019 815128) and of the European Commission (EUSMI, Grant 731019). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency−Grant MDM-2017−0720

    Age determination of the HR8799 planetary system using asteroseismology

    Full text link
    Discovery of the first planetary system by direct imaging around HR8799 has made the age determination of the host star a very important task. This determination is the key to derive accurate masses of the planets and to study the dynamical stability of the system. The age of this star has been estimated using different procedures. In this work we show that some of these procedures have problems and large uncertainties, and the real age of this star is still unknown, needing more observational constraints. Therefore, we have developed a comprehensive modeling of HR8799, and taking advantage of its gamma Doradus-type pulsations, we have estimated the age of the star using asteroseismology. The accuracy in the age determination depends on the rotation velocity of the star, and therefore an accurate value of the inclination angle is required to solve the problem. Nevertheless, we find that the age estimate for this star previously published in the literature ([30,160] Myr) is unlikely, and a more accurate value might be closer to the Gyr. This determination has deep implications on the value of the mass of the objects orbiting HR8799. An age around \approx 1 Gyr implies that these objects are brown dwarfs.Comment: 5 pages, 3 figures, accepted in MNRAS Letter

    Spectro-astrometry of the pre-transitional star LkCa 15 does not reveal an accreting planet but extended H alpha emission

    Get PDF
    Context: The detection of forming planets in protoplanetary disks around young stars remains elusive, and state-of-the-art observational techniques provide somewhat ambiguous results. The pre-transitional T Tauri star LkCa 15 is an excellent example. It has been reported that it could host three planets; candidate planet b is in the process of formation, as inferred from its Hα emission. However, a more recent work casts doubts on the planetary nature of the previous detections. Aims: We test the potential of spectro-astrometry in Hα as an alternative observational technique to detect forming planets around young stars, taking LkCa 15 as a reference case Methods. LkCa 15 was observed with the ISIS spectrograph at the 4.2 m William Herschel Telescope (WHT). The slit was oriented towards the last reported position of LkCa 15 b (parallel direction) and 90◦ from that (perpendicular). The photocenter and full width half maximum (FWHM) of the Gaussians fitting the spatial distribution at Hα and the adjacent continuum were measured. A wellknown binary (GU CMa) was used as a calibrator to test the spectro-astrometric performance of ISIS/WHT. Results: A consistent spectro-astrometric signature is recovered for GU CMa. However, the photocenter shift predicted for LkCa 15 b is not detected, but the FWHM in Hα is broader than in the continuum for both slit positions. Our simulations show that the photocenter and FWHM observations cannot be explained simultaneously by an accreting planet, but the lack of photocenter shift alone could still be consistent with an emitting planet with contrast &5.5 mag in Hα or .6 mag in the adjacent continuum. In turn, both spectro-astrometric observations are naturally reproduced from a roughly symmetric Hα emitting region centered on the star and extent comparable to the orbit originally attributed to the planet at several au. Conclusions: The extended Hα emission around LkCa 15 could be related to a variable disk wind, but additional multi-epoch data and detailed modeling are necessary to understand its physical nature. Optical spectro-astrometry carried out with mid-size telescopes is capable of probing small-scale structures in relatively faint young stars that are not easily accessible with state-of-the-art instrumentation mounted on larger telescopes. Therefore, spectro-astrometry in Hα is able to test the presence of accreting planets and can be used as a complementary technique to survey planet formation in circumstellar disks

    Polarimetric coronagraphy of BD+31643

    Full text link
    Context. The binary B5V star BD+31?643 exhibits a disk-like structure detected at optical wavelengths. Even though the feature is well centered on the star, it has been argued, based on Spitzer observations, that the feature is a filament not directly associated to the binary star. Aims. The purpose of the present paper is to investigate whether polarization imaging may provide evidence either for or against the disk hypothesis. In addition, we aim at clarifying whether there might be any additional close companion to the binary star. Methods. We used the coronagraph PolCor in its polarization mode in combination with an EMCCD camera allowing short unit exposure times. As a result of shift-and-add and frame selection, the spatial resolution is improved compared to traditional CCD imaging. In order to possibly reveal an additional stellar companion, we used high resolution spectroscopy in the optical and high spatial resolution imaging in the near-IR. Results. The disk/filament is much better seen in polarization; it is narrow and a line drawn along the ridge passes within a second of arc from the star. The degree of polarization is high (?50% after correction for the extended component of the reflection nebula) which means that the disk/filament must be approximately at the same distance as the star. Although we confirm that the feature is much brighter south-east than north-west of the star, the evidence that the feature is physically connected to the star is strengthened and suggests that we are witnessing the destruction process of an accretion disk. Our spectroscopy shows that at least one of the stars is a spectroscopic binary. We were, however, not able to spatially resolve any stellar component in addition to the two well separated stars.Comment: 9 pages, 19 figure
    corecore