24 research outputs found

    The extreme environment of a library: Xerophilic fungi inhabiting indoor niches

    Get PDF
    The use of Compactus shelves by libraries and archives is a good solution to optimize the storage space and prevent dust deposits on books. However, they are probably the cause of severe cases of fungal colonization in historical library materials. A typical phenomenon occurs as a spread of white mycelial growth forming scattered spots, mainly on volumes with leather or fabric bindings. Recent studies have identified the xerophilic fungus Eurotium halophilicum (anamorph Aspergillus halophilicus) as responsible for this kind of contamination. A similar situation was found inside the Library of Humanities (BAUM), at Ca' Foscari University, Venice (Italy). Various sampling methods, including cotton swabs and adhesive tape, were adopted to isolate fungi from books and a set of aerobiological analyses was performed to characterize the environment of the repository. The presence of E. halophilicum on both books and in the indoor air was confirmed by direct observation of adhesive tape samples, microscopic observations and molecular methods. Moreover, Aspergillus creber and Aspergillus protuberus belonging to the revised group Aspergillus section Versicolores, were also isolated for the first time in Italian conservation environments

    Association of HLA and post-schistosomal hepatic disorder: A systematic review and meta-analysis.

    Get PDF
    Several human genetic variants, HLA antigens and alleles are reportedly linked to post-schistosomal hepatic disorder (PSHD), but the results from these reports are highly inconclusive. In order to estimate overall associations between human genetic variants, HLA antigens, HLA alleles and PSHD, we systematically reviewed and performed a meta-analysis of relevant studies in both post-schistosomal hepatic disorder and post-schistosomal non-hepatic disorder patients. PubMed, Scopus, Google Scholar, The HuGE Published Literature database, Cochrane Library, and manual search of reference lists of articles published before July 2009 were used to retrieve relevant studies. Two reviewers independently selected articles and extracted data on study characteristics and data regarding the association between genetic variants, HLA antigens, HLA alleles and PSHD in the form of 2×2 tables. A meta-analysis using fixed-effects or random-effects models to pooled odds ratios (OR) with corresponding 95% confidence intervals were calculated only if more than one study had investigated particular variation. We found 17 articles that met our eligibility criteria. Schistosoma mansoni and Schistosoma japonicum were reported as the species causing PSHD. Since human genetic variants were only investigated in one study, these markers were not assessed by meta-analysis. Thus, only HLA-genes (a total of 66 HLA markers) were conducted in the meta-analysis. Our meta-analysis showed that human leucocyte antigens HLA-DQB1*0201 (OR=2.64, P=0.018), DQB1*0303 (OR=1.93, P=0.008), and DRB1*0901 (OR=2.14, P=0.002) alleles and HLA-A1 (OR=5.10, P=0.001), A2 (OR=2.17, P=0.005), B5 (OR=4.63, P=0.001), B8 (OR=2.99, P=0.02), and B12 (OR=5.49, P=0.005) serotypes enhanced susceptibility to PSHD, whereas HLA-DQA1*0501 (OR=0.29, P≀0.001) and DQB1*0301 (OR=0.58, P=0.007) were protective factors against the disease. We further suggested that the DRB1*0901-DQB1*0201, DRB1*0901-DQB1*0303 and A1-B8 haplotypes enhanced susceptibility to PSHD, whereas DQA1*0501-DQB1*0301 linkage decreased the risk of PSHD. The result improved our understanding of the association between the HLA loci and PSHD with regard to pathogenic or protective T-cells and provided novel evidence that HLA alleles may influence disease severity

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    A‎Decentralized‎Technique‎for‎Autonomous‎ Service‎Restoration‎in Active‎Radial‎ Distribution‎Networks

    No full text
    This paper proposes a fully decentralized MultiAgent System (MAS) based technique for service restoration of radial distribution networks. The technique utilizes expert system rules and considers the customers' priority and the presence of distributed generators (DGs). It also considers the operational constraints in both healthy and restored sections of the feeder. The technique relies on one type of agents only, hence, simplifying its implementation. Moreover, it allows for assigning a back-up decision making agent to improve the reliability of the restoration process. The effectiveness of the technique is validated through several case studies simulated on an 11 kV distribution feeder. The agents are implemented in Java Agent Developing Framework (JADE) environment for communications and decisions making. Power flow calculations are performed in MATLAB environment to validate the correctness of the agents' decisions
    corecore