28 research outputs found

    CK2 phosphorylation of the PRH/Hex homeodomain functions as a reversible switch for DNA binding

    Get PDF
    The proline-rich homeodomain protein (PRH/Hex) regulates transcription by binding to specific DNA sequences and regulates mRNA transport by binding to translation initiation factor eIF4E. Protein kinase CK2 plays multiple roles in the regulation of gene expression and cell proliferation. Here, we show that PRH interacts with the β subunit of CK2 in vitro and in cells and that CK2 phosphorylates PRH. Phosphorylation of PRH by CK2 inhibits the DNA binding activity of this protein and dephosphorylation restores DNA binding indicating that this modification acts as a reversible switch. We show that phosphorylation of the homeodomain is sufficient to block DNA binding and we identify two amino acids within this the domain that are phosphorylated by CK2: S163 and S177. Site-directed mutagenesis demonstrates that mutation of either of these residues to glutamic acid partially mimics phosphorylation but is insufficient to completely block DNA binding whereas an S163E/S177E double mutation severely inhibits DNA binding. Significantly, the S163E and S177E mutations and the S163E/S177E double mutation all inhibit the ability of PRH to regulate transcription in cells. Since these amino acids are conserved between many homeodomain proteins, our results suggest that CK2 may regulate the activity of several homeodomain proteins in this manner

    Ramified rolling circle amplification for synthesis of nucleosomal DNA sequences

    Get PDF
    Nucleosomes are a crucial platform for the recruitment and assembly of protein complexes that process the DNA. Mechanistic and structural in vitro studies typically rely on recombinant nucleosomes that are reconstituted using artificial, strong-positioning DNA sequences. To facilitate such studies on native, genomic nucleosomes, there is a need for methods to produce any desired DNA sequence in an efficient manner. The current methods either do not offer much flexibility in choice of sequence or are less efficient in yield and labor. Here, we show that ramified rolling circle amplification (RCA) can be used to produce milligram amounts of a genomic nucleosomal DNA fragment in a scalable, one-pot reaction overnight. The protocol is efficient and flexible in choice of DNA sequence. It yields 10-fold more product than PCR, and rivals production using plasmids. We demonstrate the approach by producing the genomic DNA from the human LIN28B locus and show that it forms functional nucleosomes capable of binding pioneer transcription factor Oct4

    Comparison of reprogramming factor targets reveals both species-specific and conserved mechanisms in early iPSC reprogramming

    Get PDF
    Abstract Background Both human and mouse fibroblasts can be reprogrammed to pluripotency with Oct4, Sox2, Klf4, and c-Myc (OSKM) transcription factors. While both systems generate pluripotency, human reprogramming takes considerably longer than mouse. Results To assess additional similarities and differences, we sought to compare the binding of the reprogramming factors between the two systems. In human fibroblasts, the OSK factors initially target many more closed chromatin sites compared to mouse. Despite this difference, the intra- and intergenic distribution of target sites, target genes, primary binding motifs, and combinatorial binding patterns between the reprogramming factors are largely shared. However, while many OSKM binding events in early mouse cell reprogramming occur in syntenic regions, only a limited number is conserved in human. Conclusions Our findings suggest similar general effects of OSKM binding across these two species, even though the detailed regulatory networks have diverged significantly

    PRH/Hex: an oligomeric transcription factor and ,ultifunctional regulator of cell fate.

    Get PDF
    The PRH (proline-rich homeodomain) [also known as Hex (haematopoietically expressed homeobox)] protein is a critical regulator of vertebrate development. PRH is able to regulate cell proliferation and differentiation and is required for the formation of the vertebrate body axis, the haematopoietic and vascular systems and the formation of many vital organs. PRH is a DNAbinding protein that can repress and activate the transcription of its target genes using multiple mechanisms. In addition, PRH can regulate the nuclear transport of specific mRNAs making PRH a member of a select group of proteins that control gene expression at the transcriptional and translational levels. Recent biophysical analysis of the PRH protein has shown that it forms homo-oligomeric complexes in vivo and in vitro and that the proline-rich region of PRH forms a novel dimerization interface. Here we will review the current literature on PRH and discuss the complex web of interactions centred on this multifunctional protein

    Oligomerisation and phosphorylation of the proline-rich homeodomain protein (PRH)

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Purification and characterisation of the PRH homeodomain: removal of the N-terminal domain of PRH increases the PRH homeodomain-DNA interaction

    No full text
    The Proline-Rich Homeodomain (PRH) protein is a regulator of transcription and translation and plays a key role in the control of cell proliferation and cell differentiation. PRH contains an N-terminal proline-rich domain that can repress transcription when expressed as a fusion protein with an unrelated DNA binding domain, a central homeodomain that binds to specific DNA sequences and an acidic C-terminal domain of no known function. In order to investigate the structure and functions of PRH we have purified the full-length protein and truncated proteins corresponding to different domains of PRH fused to histidine tags. Here we compare the effects of elution conditions and column volume on protein purification and we investigate the DNA binding activity of these proteins. We show that the PRH homeodomain co-purifies with nucleic acids even after nuclease treatment and that a high salt-wash is required to remove bound nucleic acids. In contrast with the full-length PRH protein, the PRH homeodomain binds to DNA with high affinity. We show that a truncated protein comprising the homeodomain and C-terminal domain also binds to DNA with high affinity and we conclude that the N-terminal domain of PRH inhibits the homeodomain–DNA interaction
    corecore