92 research outputs found

    Electron refraction at lateral atomic interfaces

    Get PDF
    We present theoretical simulations of electron refraction at the lateral atomic interface between a “homogeneous” Cu(111) surface and the “nanostructured” one-monolayer (ML) Ag/Cu(111) dislocation lattice. Calculations are performed for electron binding energies barely below the 1 ML Ag/ Cu(111) M-point gap (binding energy EB ¼53 meV, below the Fermi level) and slightly above its C -point energy (EB ¼160 meV), both characterized by isotropic/circular constant energy surfaces. Using plane-wave-expansion and boundary-element methods, we show that electron refraction occurs at the interface, the Snell law is obeyed, and a total internal reflection occurs beyond the critical angle. Additionally, a weak negative refraction is observed for EB ¼53 meV electron energy at beam incidence higher than the critical angle. Such an interesting observation stems from the interface phase-matching and momentum conservation with the umklapp bands at the second Brillouin zone of the dislocation lattice. The present analysis is not restricted to our Cu-Ag/Cu model system but can be readily extended to technologically relevant interfaces with spinpolarized, highly featured, and anisotropic constant energy contours, such as those characteristic for Rashba systems and topological insulators. Published by AIP Publishing.Peer ReviewedPostprint (published version

    Tuning the Indirect Band Gap of Square Metallic Superlattices

    Get PDF
    Shockley surface states at noble metal surface are textbook examples o

    Modifying the Cu(111) Shockley surface state by Au alloying

    Get PDF
    The deposition of submonolayer amounts of Au onto Cu(111) results in a Au-Cu surface alloy with temperature- and thickness-dependent stoichiometry. Upon alloying, the characteristic Shockley state of Cu(111) is modified, shifting to 0.53 eV binding energy for a particular surface Au2Cu concentration, which is a very high binding energy for a noble-metal surface. Based on a phase accumulation model analysis, we discuss how this unusually large shift is likely reflecting an effective increase in the topmost layer thickness of the order of, but smaller than, the value expected from the moiré undulation. © 2012 American Physical Society.This work was supported in part by the Spanish MINECO (Grants No. MAT2010-21156-C03-01 and No. MAT2010-21156-C03-03), and the Basque Government (Grant No. IT-257-07). The SRC is funded by the National Science Foundation (Award No. DMR-0084402).Peer Reviewe

    Formation of the BiAg2 surface alloy on lattice-mismatched interfaces

    Get PDF
    We report on the growth of a monolayer-thick BiAg2 surface alloy on thin Ag films grown on Pt(111) and Cu(111). Using low energy electron diffraction (LEED), angle resolved photoemission spectroscopy (ARPES), and scanning tunneling microscopy (STM) we show that the surface structure of the 13 ML Bi/x-ML Ag/Pt(111) system (x≥2) is strongly affected by the annealing temperature required to form the alloy. As judged from the characteristic (3×3)R30 LEED pattern, the BiAg2 alloy is partially formed at room temperature. A gentle, gradual increase in the annealing temperatures successively results in the formation of a pure BiAg2 phase, a combination of that phase with a (2×2) superstructure, and finally the pure (2×2) phase, which persists at higher annealing temperatures. These results complement recent work reporting the (2×2) as a predominant phase, and attributing the absence of BiAg2 alloy to the strained Ag/Pt interface. Likewise, we show that the growth of the BiAg2 alloy on similarly lattice-mismatched 1 and 2 ML Ag-Cu(111) interfaces also requires a low annealing temperature, whilst higher temperatures result in BiAg2 clustering and the formation of a BiCu2 alloy. The demonstration that the BiAg2 alloy can be formed on thin Ag films on different substrates presenting a strained interface has the prospect of serving as bases for technologically relevant systems, such as Rashba alloys interfaced with magnetic and semiconductor substrates.This work was supported by the Spanish Gouvernment (Grant No. MAT2013-46593-C6-4-P), the Basque Gouvernment (Grant No. IT621-13), and the Spanish Research Council (Grant No. CSIC-201560I022). Z.M.A. would like to acknowledge funding from DAAD and DIPC. P.L. would also like to acknowledge funding from the Deutsche Forschungsgemeinschaft via Project No.RE 1469/8-1.Peer Reviewe

    Scattering of surface electrons by isolated steps versus periodic step arrays

    Get PDF
    We investigate the scattering of electrons belonging to Shockley states of (111)-oriented noble metal surfaces using angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). Both ARPES and STM indicate that monatomic steps on a noble metal surface may act either as strongly repulsive or highly transmissive barriers for surface electrons, depending on the coherence of the step lattice, and irrespectively of the average step spacing. By measuring curved crystal surfaces with terrace length ranging from 30 to 180 Å, we show that vicinal surfaces of Au and Ag with periodic step arrays exhibit a remarkable wave function coherence beyond 100 Å step spacings, well beyond the Fermi wavelength limit and independently of the projection of the bulk band gap on the vicinal plane. In contrast, the analysis of transmission resonances investigated by STM shows that a pair of isolated parallel steps defining a 58 Å wide terrace confines and decouples the surface state of the small terrace from that of the (111) surface. We conclude that the formation of laterally confined quantum well states in vicinal surfaces as opposed to propagating superlattice states depends on the loss of coherence driven by imperfection in the superlattice order. © 2013 American Physical Society.This work was supported in part by the Spanish MICINN (MAT2007-63083 and MAT2010-15659), the Basque Government (IT-257-07), and the Agència de Gestió d’Ajuts Universitaris i de Recerca (2009 SGR 695). The SRC is funded by the National Science Foundation (Award No. DMR-0084402). A.M. and J.L.-C. acknowledge funding from the Ramon y Cajal Fellowship program.Peer Reviewe

    Metallic thin films on stepped surfaces: lateral scattering of quantum well states

    Get PDF
    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.Quantum well states of Ag films grown on stepped Au(111) surfaces are shown to undergo lateral scattering, in analogy with surface states of vicinal Ag(111). Applying angle resolved photoemission spectroscopy we observe quantum well bands with zone-folding and gap openings driven by surface/interface step lattice scattering. Experiments performed on a curved Au(111) substrate allow us to determine a subtle terrace-size effect, i.e., a fine step-density-dependent upward shift of quantum well bands. This energy shift is explained as mainly due to the periodically stepped crystal potential offset at the interface side of the film. Finally, the surface state of the stepped Ag film is analyzed with both photoemission and scanning tunneling microscopy. We observe that the stepped film interface also affects the surface state energy, which exhibits a larger terrace-size effect compared to surface states of bulk vicinal Ag(111)crystals.This work was supported in part by the Spanish Ministry of Economy (MINECO) through grants MAT2013–46593-C6–2-P, MAT2013–46593-C6–4-P, MAT2013–46593-C6–5-P, and FIS2010–19609-C02–02, by the German Sonderforschungsbereich SFB 1083, and by the Basque Government through Projects IT-621–13 and IT-756–13. ICN2 acknowledges support from the Severo Orchoa Program (MINECO, Grant SEV-2013-0295).Peer Reviewe

    Atomically-precise texturing of hexagonal boron nitride nanostripes

    Get PDF
    Monolayer hexagonal boron nitride (hBN) is attracting considerable attention because of its potential applications in areas such as nano- and opto-electronics, quantum optics and nanomagnetism. However, the implementation of such functional hBN demands precise lateral nanostructuration and integration with other two-dimensional materials, and hence, novel routes of synthesis beyond exfoliation. Here, a disruptive approach is demonstrated, namely, imprinting the lateral pattern of an atomically stepped one-dimensional template into a hBN monolayer. Specifically, hBN is epitaxially grown on vicinal Rhodium (Rh) surfaces using a Rh curved crystal for a systematic exploration, which produces a periodically textured, nanostriped hBN carpet that coats Rh(111)-oriented terraces and lattice-matched Rh(337) facets with tunable width. The electronic structure reveals a nanoscale periodic modulation of the hBN atomic potential that leads to an effective lateral semiconductor multi-stripe. The potential of such atomically thin hBN heterostructure for future applications is discussed.The authors acknowledge financial support from the Spanish Ministry of Science and Innovation (Grants MAT-2017-88374-P, PID2019-107338RB-C63, MAT2017-88492-R, and Severo Ochoa CEX2019-000910-S), the CSIC (Grant 2020AEP178), the Basque Government (Grant IT-1255-19), the Marie Sklodowska-Curie European Union's Horizon 2020 program (grant MagicFACE 797109), the European Research Council (Advanced Grant 789104-eNANO), and Elettra Sincrotrone Trieste for providing access to its synchrotron radiation facilities. I.P. and F.B. acknowledge funding from EUROFEL, and D.U. from the Ministry of Science and Higher Education of the Russian Federation [Grant No. 075-15-2020-797 (13.1902.21.0024)]. A.A.M. acknowledges the German Ministry for Education and Research (Grant 05K19KER).Peer reviewe

    Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.

    Get PDF
    BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112

    Global economic burden of unmet surgical need for appendicitis

    Get PDF
    Background: There is a substantial gap in provision of adequate surgical care in many low-and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods: Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results: Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion: For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially
    corecore