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Abstract 

Shockley surface states at noble metal surface are textbook examples of “free-electron” dispersions in solids. 

Their interaction with lateral periodic arrays of defects drastically modifies this simple band structure picture at 

different rates. Here, the plane wave expansion method has been used to investigate the modification of the band 

structure of metal surfaces in the present of two-dimensional square array of scatterers. Such nanopatterned 

square superlattices were found to trigger the opening of an indirect band gap at the boundaries of the 

superlattice Brillouin zone. Additionally, both the momentum-position and the size of these gaps could be tuned 

by varying the superlattice periodicity and the scattering potential, respectively. These findings provide a route 

towards engineering the electronic structure of patterned metal surfaces. 
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1. Introduction 

Two-dimensional nanostructures made of inorganic and organic networks on metallic substrates have received 

much attention in recent years [1]. Such self-assembled nanopatterned  surfaces found promising applications in 

all fields of nanoscience, particularly nanoelectronics [2], chemical sensing [3], and as template surfaces for 

selective molecular assembly [4,5]. Their fabrication has progressed rapidly such that patterns with complex 

unit cells and almost of any arbitrary geometry could be fabricated [6].  
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The use of pre-patterned surfaces to guide adsorption processes [7] has been demonstrated on a variety of 

spontaneously nanostructured substrates such as dislocation networks [8], vicinal surfaces [9], and self-ordered 

biphase systems [10,11]. With these, the delicate balance between adsorbate-adsorbate and adsorbate-substrate 

interactions [12] could be finely tuned to achieve the desired molecular or metallic assembly on crystal surfaces. 

At the surface of the (111)-oriented noble metal substrates electrons exhibiting free-electron parabolic 

dispersion with distinct dispersion parameters for each noble metal surface are reported [13,14]. Such dispersion 

parameters have been measured by angle-resolved photoemission spectroscopy (ARPES) for the three “flat” 

(111) noble metal surfaces [15]. The interaction of the free electrons with 2D periodic arrays of scatterers 

modifies these Shockley dispersions at different rates. This has been reported for 1D array of steps, e.g., in 

vicinal surfaces [16], and for 2D hexagonal and honeycomb arrays, e.g., 1 ML Ag/Cu(111) [17] and 

DPDI/Cu(111) [18], respectively. The overall effect of the scatterers is an upward energy shift and the opening 

of energy gaps at some high symmetry points. In these regards, the electronic structure of squarely patterned 

metal surfaces is rarely present in literature in spite the possible experimental realization. One such an 

experimental example of a 2D squarely nanopatterned metal surface is the N/Cu(001) [19]. A two-dimensional 

square lattice of nitrogen-adsorbed areas with a typical lateral dimension of roughly 5 nm appeared when the 

average density of adsorbed nitrogen atoms on Cu(001) was 35% of that of the surface Cu atoms. 

To this end, the article presents systematic and detailed theoretical study of electron scattering problem in 2D 

square superlattices, formed on metal surfaces, using electron plane wave expansion method (EPWE). By 

systematic variation in the scattering parameters (i.e., the periodic potential and periodicity), the effect of both 

on the electronic structure was obtained by the detailed analysis of series of the full band structures, constant 

energy surfaces (CES), and local density of states (LDOS). Specifically, such square superlattices 

predominantly exhibit an indirect band gap which could be largely tuned through controlling the scatterer’s 

parameters. 

2. Computational method 

The electron plane wave expansion method (EPWE) has been used throughout the present study. Within this 

methodology, Schrödinger equation for electrons encountering a square periodic array of circular scatterers, 

each encloses an effective potential V, is written as: 

�−
𝛻𝛻2

2
+ 𝑉𝑉𝑠𝑠(𝑟𝑟) − 𝐸𝐸𝑛𝑛𝑛𝑛�𝜓𝜓𝑛𝑛𝑛𝑛 = 0                                                                                                                                            (1) 

where 𝑘𝑘2 = 2𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸/ħ2 is the electron momentum, E is the electron energy, and 𝑚𝑚eff is the electron effective 

mass. Both the wavefuction and the periodic potential are expanded in the form of Fourier expansions, in order 

to obtain the following central equation after substitution in equation (1) [20],  
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2
− 𝐸𝐸𝑛𝑛𝑛𝑛� 𝛿𝛿(𝐺𝐺 − 𝐺𝐺′′) + 𝑉𝑉𝐺𝐺−𝐺𝐺′′ �

𝐺𝐺′′

𝑐𝑐𝐺𝐺′′ (𝑘𝑘) = 0                                                                                             (2) 

where 𝑐𝑐𝐺𝐺′′  and 𝑉𝑉𝐺𝐺−𝐺𝐺′′  are the Fourier coefficients of the wavefunction and potential, respectively, and 𝐺𝐺,𝐺𝐺′′ are 
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two reciprocal lattice vectors, while the delta function 𝛿𝛿(𝐺𝐺 − 𝐺𝐺′′) ensures that first term in the sum over G′′ is 

zero unless 𝐺𝐺′′ = 𝐺𝐺. 

Equation (2) is then solved numerically by terminating the expansion at some finite reciprocal lattice vectors 

(𝐺𝐺′′ = 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚). In the present work a decent convergence is achieved for 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚  ≥ 5. 

3. Results and discussions 

3.1. Electronic Structure  

 

Figure 1: (a) The geometry used in EPWE calculations. The blue area defines a metal surface and the red 

circles represent square array of defects. (b) The Brillouin zone of the geometry defined in (a). (c,d) The EPWE 

simulated photoemission intensity showing the band dispersion for the patterned metal surface along ΓX���� (c) and 

ΓM���� (d) directions. 
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Figure 1(a) presents the surface potential landscape used as input for EPWE. It simply, describes metal surface 

(blue) with a periodic array of circular (red) scatterers. Given the known parabolic dispersion for flat metal 

surfaces, the potential within the blue region is set to constant (𝑉𝑉 0 = 0), while the potential barrier inside the 

circular bases has height of 𝑉𝑉1 = 700 meV. This choice of the scattering potential is intended to be within the 

same order of magnitude for reported studies. Both the circle diameter and superlattice constant were set to 1 nm 

and 3 nm respectively, whereas the effective mass used was 0.42 𝑚𝑚e, i.e., practically the same as reported 

experimentally for Ag(111) and Cu(111) [21]. The simulated photoemission intensity for the system presented 

in (a) is displayed in Fig. 1(c,d). The calculations are performed along both ΓX����  and ΓM���� directions (red arrows) 

of the first BZ (blue square in Fig. 1(b)). One clearly sees in (c) a parabolic dispersion with a band gap opening 

at the BZ boundary (i.e., the X�-point) together with a rigid upward shift (~ 35 meV) for the surface state band 

minimum at Γ�-point. On other hand, the band dispersion in (d) also exhibits a weak band gap opening at the BZ 

corner (i.e., the M� -point). The X�-point and M� -point gaps size amount to ~ 60 meV and ~ 15 meV, respectively. 

Additionally, the energetic positions of these gaps are clearly different, indicating an indirect character of the 

full ΓX����𝑀𝑀Γ���� gap. In order to elucidate more details of the square nanopatterned surface, the electronic band 

structure along the (ΓXMΓ) direction and the constant energy surfaces (CES) are calculated and presented in 

Fig. 2. In (a) the band structure calculation confirms the indirect semiconducting band gap of this surface state. 

The minimum of the conduction band (red line) does not occur at the same k value as the valence band 

maximum (green line).  To trace these electronic details at all k points inside the BZ the CES were calculated by 

EPWE at different set of fixed energies. Figure 2(b-e) depicts the simulated CESs taken at the black dashed lines 

in (a), i.e., at 110 meV, 130 meV, 170 meV, and 210 meV, respectively. The white dashed square in each CES 

map define the borders of the first BZ. The first CES in (b) taken at electron energy of E = 110 meV, i.e., barely 

at the lower edge of the X�-point gap, exhibits intensity reduction only at the four equivalent X�-points, confirming 

the beginning of energy gaps at these points. At electron energies within this gap, e.g., E = 130 meV, the 

intensity reduction was enhanced for all k-points on the surface BZ, except in the vicinity of the corners defining 

the M� -points, Fig. 2(c). Furthermore, these CES exhibit a significant deviation from the “circular” contours of 

free electrons, where the CES clearly contain “flat” segments. The length of these segments is reduced at the 

expense of the intensity depletion regions for increased electron energies within the gap. Exactly at the 

conduction band minimum, i.e., E = 170 meV, the simulated CES is presented in (d). Four electron pockets 

showed up at the equivalents X�-gaps. The last CES in (e) is taken approximately at the center of the M� -gap i.e., 

at electron energy of E = 210 meV. The relatively low intensity at the BZ corners corresponds to the four weak 

gaps at these particular momentum positions. The correspondence between electronic structure in real and 

reciprocal space is experimentally brought by scanning tunneling spectroscopy (STS). This is an experimental 

technique that probes the local density of electronic states (LDOS), which in turns contains information on the 

band gap of nanostructured surfaces and local electronic behavior at the atomic scale [22]. Using EPWE, the 

LDOS are calculated at three different cites, i.e., specific points in the real space geometry in Fig. 3(a). These 

points were chosen as variations in the LDOS are expected to be significant according to symmetry 

considerations. The LDOS at the center of the circular potential barriers (black) is very low at all energies 

compared to the other two points (blue and red). This confirms that electrons are possibly excluded from regions 

with relatively large potential values. Likewise, the LDOS taken at the center of the unit cell (red), and the 

center of the side length (blue) where the potential is zero, are significantly higher and exhibit strong variations 
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with the electron energy. The inflection points (vertical green line) at ~ 35 meV for all spectra define the Γ�-point 

energy, in agreement with band structure calculations. The blue and red LDOS, in addition, exhibit maxima and 

minima which indicate the presence of X�-point and M� -point gaps, where the vertical dashed lines define the 

valence (conduction) band maximum (minimum).  

 

Figure 2: (a) Calculated band structure using EPWE along the ΓXMΓ��������direction, i.e, along the black arrows of the 

first Brillouin zone (blue square). (b-e) Simulated constant energy surfaces taken at the black dashed lines in (a), 

i.e., at 110, 130, 170, and 210 meV respectively. 

In order to gain information on the LDOS at all real-space lattice points, 2D-LDOS calculations were performed 

at the three electron energies indicated by the black dashed lines in (a), i.e., at 105 meV (b), 170 meV (c), and 

210 meV (d). The blue, red, and black points are overlaid for direct comparison with Fig. 3(a). The LDOS has a 

minimum intensity value at all, and nearby, the black points, i.e., at the bases, at all energies. However, the 
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LDOS values at the red and blue points follow some intensity modulation in accordance with symmetry 

considerations [23]. In particular, the reduction of LDOS intensity at the red point directly mimic the influence 

of the energy gaps, as shown in (b,c,d). 

 

Figure 3: (a) The energy-dependent local density of states (LDOS) calculated by the EPWE for three real space 

points. (b-d) The 2D-LDOS taken at three electron energies. 

3.2. Effect of periodic potential 

With the previous analysis, the surface state at metal surface interacting with square array of defects exhibits 

band gap openings at the symmetry points and LDOS modulations due to these gaps and the symmetry of the 

structure. In the following, the effect of the scattering potential on the electronic structure of squarely patterned 

metal surface shall be discussed. Figure 4 displays the electronic band structure as calculated by EPWE along 

the (ΓXMΓ) directions (a). All other geometrical and physical parameters in these calculations were identical to 

those previously discussed except for the height of the potential barrier (𝑉𝑉1), which is changed from 700 meV to 

4.7 eV. The surface state exhibits a parabolic dispersion with much wider gaps at the X� and M�  points, together 

with a larger rigid upward shift for the band minimum at Γ�-point than the values of band structure depicted in 
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Fig. 2(a). The band dispersion has a valence band maximum (green line) at a different k value than its 

conduction band maximum (red line), again confirming an indirect gap in spite of the order of magnitude higher 

potential employed. 

 

Figure 4: a. Calculated band structure using EPWE along the ΓXMΓ��������direction for a square patterned metal 

surface with circular bases potential of 4.7 eV and lattice parameter d = 3 nm. (b-e) The simulated constant 

energy surfaces using EPWE taken at the four electron energies. (f)  The variation of Γ�-point shift (blue) and 

both X�-point (red) and M� -point (yellow) gaps size as a function of the circular base potential V1. 

Figures 4(b-e) present the simulated CESs taken at the black dashed lines in (a), i.e., at 125 meV, 180 meV, 215 

meV, and 230 meV, respectively. The CES in (b) is taken at the lower edge of the X�-gap, and exhibits intensity 

reduction only at the four equivalent X�-points, confirming the beginning of energy gaps at these points. Right at 

the center of X�-gap, the intensity reduction was enhanced for all k-points on the surface BZ, except for the 
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corners defining the M� -points (c). At electron energy of the conduction band minimum, E = 215 meV, the hole 

pockets close into defined points, with the emergence of weak intensity due to the proximity of the bottom of 

the conduction (d). The last CES in (e) is taken approximately at the center of the M� -gap, i.e., the low intensity 

in the BZ corners is increased. By EPWE, five electronic band dispersions of squarely patterned metal surface 

were calculated to investigate the effect of periodic potential barrier 𝑉𝑉1on the semiconducting band gap size, and 

Γ�-point energy. The resulting Γ�-point energy (blue), X�-point gap size (red) and M� -point gap size (yellow) as a 

function of  𝑉𝑉1 are presented in Fig. 4(f). It is clear that both the Γ�-point energy and M� -point gap size increase 

rapidly with the scattering potential, and tend to saturate at higher 𝑉𝑉1 values. The highest potential where these 

saturate sets the infinite potential limit of the given system. 

3.3. Effect of periodicity 

The Bloch wave function has an exponential proportion with the reciprocal lattice vector G, i.e., inverse 

relationship between the effective periodic potential V and the superlattice constant d. This entails that the 

bigger the superlattice periodicity, the smaller the effect of periodic potential is. This is the motivation to discuss 

the effect of superlattice periodicity on surface state of the square superlattice presented here. 

The simulated CESs of a squarely patterned metal surface with a potential barrier height V=700 meV and a 

superlattice constant d = 5 nm are presented in Fig. 5(a-d). To demonstrate the effect of the modified d, these 

CESs are taken at the edges of the corresponding surface state gaps, i.e., at 40 meV, 50 meV, 65 meV, and 75 

meV, respectively. Actually one can determine the X�-point gap edges and size from the first CESs. Figure 5(a) 

confirms the beginning of X�-point energy gaps, the main and umklapp bands back-folding are satisfied at the 

four equivalents X�-points.  

The intensity lowering was developed in (b) for all k-points on the surface BZ, except for the corners defining 

the M� -points, i.e., the CES taken at the center of X�-point energy gap. Clearly seen is the high intensity of 

allowed stats at the BZ boundaries demonstrating the lower edges of the four equivalents X�-gaps in (c). Based 

on this, the X�-point gap size is reduced from 60 meV in Fig. 2, to 25 meV for this surface state. Likewise, the M� -

point gap size is reduced to 2 meV (d), and the Γ�-point energy become 10 meV. To discuss the three preceding 

dispersion parameters as a function of superlattice constant (expressed as 1/d), five electronic band structures 

were calculated by EPWE, where the superlattice periodicity (𝑑𝑑) is changed gradually from 3 nm and 5 nm. The 

three curves in Fig. 5(e) confirmed the behavior analogy between the periodicity reduction and potential barrier 

enhancement. 

4. Constrains and limitations 

During this study the atomic details are not taken into account. This is a valid approach only when treating the 

electronic surface states. For electronic states which have wavelength of the order of the atomic lattice, such as 

bulk states, the atomic structure is crucial for the proper description of the band structure.  In this context, 

methods such as density functional theory (DFT) could be employed. 
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Figure 5: (a,b,c,d) Simulated Constant energy surfaces using EPWE for a square patterned metal surface of 

circular potential with 700 meV and lattice parameter d = 5 nm. The preceding CESs taken at the four electron 

energies, i.e. at 40, 50, 65, and 75 meV respectively. (e)  Each of Γ�-point shift (blue), X�-gap size (red), and M� -

gap size (yellow) as a function of the superlattice constant (expressed as 1/d). 

5. Conclusion 

It has been shown that the band structure of square metallic superlattices, with circular bases as scatterers, is 

characterized by an indirect semiconducting energy gap and the surface state exhibit a rigid upward energy shift. 

Evidence of this semiconducting gap is also seen in the LDOS, where 2D-maps of LDOS taken at energies 

around this gap were not identical. Furthermore, it has been possible to tune this energy gap size and the Γ�-point 

energy through both the barrier height and superlattice periodicity. 
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