79 research outputs found

    Full Counting Statistics of Superconductor--Normal-Metal Heterostructures

    Full text link
    The article develops a powerful theoretical tool to obtain the full counting statistics. By a slight extension of the standard Keldysh method we can access immediately all correlation functions of the current operator. Embedded in a quantum generalization of the circuit theory of electronic transport, we are able to study the full counting statistics of a large class of two-terminal contacts and multi-terminal structures, containing superconductors and normal metals as elements. The practical use of the method is demonstrated in many examples.Comment: 35 pages, contribution to "Quantum Noise", ed. by Yu.V. Nazarov and Ya.M. Blanter, minor changes in text, references adde

    Large microwave generation from d.c. driven magnetic vortex oscillators in magnetic tunnel junctions

    Full text link
    Spin polarized current can excite the magnetization of a ferromagnet through the transfer of spin angular momentum to the local spin system. This pure spin-related transport phenomena leads to alluring possibilities for the achievement of a nanometer scale, CMOS compatible and tunable microwave generator operating at low bias for future wireless communications. Microwave emission generated by the persitent motion of magnetic vortices induced by spin transfer effect seems to be a unique manner to reach appropriate spectral linewidth. However, in metallic systems, where such vortex oscillations have been observed, the resulting microwave power is much too small. Here we present experimental evidences of spin-transfer induced core vortex precessions in MgO-based magnetic tunnel junctions with similar good spectral quality but an emitted power at least one order of magnitude stronger. More importantly, unlike to others spin transfer excitations, the thorough comparison between experimental results and models provide a clear textbook illustration of the mechanisms of vortex precessions induced by spin transfer

    Microwave Oscillations of a Nanomagnet Driven by a Spin-Polarized Current

    Full text link
    We describe direct electrical measurements of microwave-frequency dynamics in individual nanomagnets that are driven by spin transfer from a DC spin-polarized current. We map out the dynamical stability diagram as a function of current and magnetic field, and we show that spin transfer can produce several different types of magnetic excitations, including small-angle precession, a more complicated large-angle motion, and a high-current state that generates little microwave signal. The large-angle mode can produce a significant emission of microwave energy, as large as 40 times the Johnson-noise background.Comment: 12 pages, 3 figure

    Locking electron spins into magnetic resonance by electron-nuclear feedback

    Full text link
    The main obstacle to coherent control of two-level quantum systems is their coupling to an uncontrolled environment. For electron spins in III-V quantum dots, the random environment is mostly given by the nuclear spins in the quantum dot host material; they collectively act on the electron spin through the hyperfine interaction, much like a random magnetic field. Here we show that the same hyperfine interaction can be harnessed such that partial control of the normally uncontrolled environment becomes possible. In particular, we observe that the electron spin resonance frequency remains locked to the frequency of an applied microwave magnetic field, even when the external magnetic field or the excitation frequency are changed. The nuclear field thereby adjusts itself such that the electron spin resonance condition remains satisfied. General theoretical arguments indicate that this spin resonance locking is accompanied by a significant reduction of the randomness in the nuclear field.Comment: 6 pages, 5 figures, 4 pages supplementary materia

    Supercurrent reversal in quantum dots

    Full text link
    When two superconductors become electrically connected by a weak link a zero-resistance supercurrent can flow. This supercurrent is carried by Cooper pairs of electrons with a combined charge of twice the elementary charge, e. The 2e charge quantum is clearly visible in the height of Shapiro steps in Josephson junctions under microwave irradiation and in the magnetic flux periodicity of h/2e in superconducting quantum interference devices. Several different materials have been used to weakly couple superconductors, such as tunnel barriers, normal metals, or semiconductors. Here, we study supercurrents through a quantum dot created in a semiconductor nanowire by local electrostatic gating. Due to strong Coulomb interaction, electrons only tunnel one-by-one through the discrete energy levels of the quantum dot. This nevertheless can yield a supercurrent when subsequent tunnel events are coherent. These quantum coherent tunnelling processes can result in either a positive or a negative supercurrent, i.e. in a normal or a pi-junction, respectively. We demonstrate that the supercurrent reverses sign by adding a single electron spin to the quantum dot. When excited states of the quantum dot are involved in transport, the supercurrent sign also depends on the character of the orbital wavefunctions

    Keldysh technique and non-linear sigma-model: basic principles and applications

    Full text link
    The purpose of this review is to provide a comprehensive pedagogical introduction into Keldysh technique for interacting out-of-equilibrium fermionic and bosonic systems. The emphasis is placed on a functional integral representation of underlying microscopic models. A large part of the review is devoted to derivation and applications of the non-linear sigma-model for disordered metals and superconductors. We discuss such topics as transport properties, mesoscopic effects, counting statistics, interaction corrections, kinetic equation, etc. The sections devoted to disordered superconductors include Usadel equation, fluctuation corrections, time-dependent Ginzburg-Landau theory, proximity and Josephson effects, etc. (This review is a substantial extension of arXiv:cond-mat/0412296.)Comment: Review: 103 pages, 19 figure

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    Increased Membrane Cholesterol in Lymphocytes Diverts T-Cells toward an Inflammatory Response

    Get PDF
    Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40–50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4+ Foxp3+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response

    Chromatin and epigenetics: current biophysical views

    Get PDF
    Recent advances in high-throughput sequencing experiments and their theoretical descriptions have determined fast dynamics of the "chromatin and epigenetics" field, with new concepts appearing at high rate. This field includes but is not limited to the study of DNA-protein-RNA interactions, chromatin packing properties at different scales, regulation of gene expression and protein trafficking in the cell nucleus, binding site search in the crowded chromatin environment and modulation of physical interactions by covalent chemical modifications of the binding partners. The current special issue does not pretend for the full coverage of the field, but it rather aims to capture its development and provide a snapshot of the most recent concepts and approaches. Eighteen open-access articles comprising this issue provide a delicate balance between current theoretical and experimental biophysical approaches to uncover chromatin structure and understand epigenetic regulation, allowing free flow of new ideas and preliminary results
    corecore