60 research outputs found

    Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites

    Get PDF
    Natural fiber‐based polymer composites have been widely studied to substitute synthetic materials. In this research, pineapple leaf fibers (PALF) and coir fibers (CF) were loaded into a polylactic acid (PLA) matrix to develop composite materials with improved mechanical and thermal properties, which could be potentially applied as biodegradable food packaging. Biocomposites with different fiber ratios were manufactured using an internal mixer plasticizer and a hot press machine. Mechanical and thermal analyses of the obtained composites were carried out and the results were compared with those of pure PLA. Scanning electron microscopy (SEM) was used to observe the microstructural failure of the composites. Mechanical tests indicated that all the composites had higher tensile and flexural modulus, compared to those of neat PLA. Also, strength values were increased upon addition of PALF, while impact tests showed enhanced strength results upon addition of CF. SEM findings confirmed the outcomes of the mechanical tests. DMA results confirmed that the storage and loss moduli of the CF/PALF/PLA hybrid composites increased with respect to those of the neat PLA, whereas the tan δ decreased. The coefficient of thermal expansion (CTE) of the PLA composites decreased with the addition of fiber reinforcements. Based on the results achieved in this investigation, the hybrid composite containing CF and PALF in a 1:1 ratio (C1P1) presented the optimum set of mechanical properties and improved thermal stability, which make it suitable for applications such as food packaging and structure components to help reduce the environmental loads

    Graphene oxide does not seem to improve the fracture properties of injection molded

    Get PDF
    ABSTRACT: Scientific literature presents a number of examples in which the mechanical properties of materials are significantly improved by adding small amounts of nano-particles. In many cases, the addition of such nano-particles is performed on polymer-matrix composites, with reported improvements in mechanical, optical, thermal or electrical properties. Therefore, the potential of this technology is huge and a great deal of research work is being performed with the aim of generating new advanced engineering materials. However, this paper presents the other side of the coin. The authors have introduced small amounts of Graphene Oxide (up to 1%) in PA6 with the aim of studying their effect on the fracture properties of the resulting composites. For the particular conditions analyzed here, no improvements in the fracture behavior (in both cracked and notched conditions) have been observed (a similar conclusion may be obtained for the tensile behavior). Other types of material properties were not covered in the analysis. Sharing this kind of (negative) results may save other researchers time and budget, and it is a much more common practice in other fields of science.The authors of this work would like to express their gratitude to the Spanish Ministry of Science and Innovation for the financial support of the project PGC2018-095400-B-I00 “Comportamiento en fractura de materiales compuestos nano-reforzados con defectos tipo entalla”, on the results of which this paper is based

    Synthetic polymer-based membrane for lithium Ion batteries

    Get PDF
    Efficient energy storage systems are increasingly needed due to advances in portable electronics and transport vehicles, lithium-ion batteries standing out among the most suitable energy storage systems for a large variety of applications. In lithium-ion batteries, the porous separator membrane plays a relevant role as it is placed between the electrodes and serves as a charge transfer medium and affects the cycle behavior. Typically, porous separators membranes are comprised of a synthetic polymeric matrix embedded in the electrolyte solution. The present chapter focus on recent advances in synthetic polymers for porous separation membranes, as well as on the techniques for membrane preparation and physicochemical characterization. The main challenges to improve synthetic polymer performance for battery separator membrane applications are also discussed.Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2019, UID/QUI/50006/2019, UID/QUI/0686/2016 and UID/EMS/00151/2019. The authors thank FEDER funds through the COMPETE 2020 Programme and National Funds through FCT under the project PTDC/FIS-MAC/28157/2017, Grants 38 SFRH/BPD/117838/2016 (JNP). and SFRH/BPD/112547/2015 (C.M.C). Financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (AEI/FEDER, UE) (including the FEDER financial support) and from the Basque Government Industry and Education Departments under the ELKARTEK, HAZITEK and PIBA (PIBA-2018-06
    corecore