36 research outputs found

    Impact of Farmland Abandonment on Water Resources and Soil Conservation in Citrus Plantations in Eastern Spain

    Full text link
    [EN] Due to the reduction in the prices of oranges on the market and social changes such as the ageing of the population, traditional orange plantation abandonment in the Mediterranean is taking place. Previous research on land abandonment impact on soil and water resources has focused on rainfed agriculture abandonment, but there is no research on irrigated land abandonment. In the Valencia Regionthe largest producer of oranges in Europeabandonment is resulting in a quick vegetation recovery and changes in soil properties, and then in water erosion. Therefore, we performed rainfall simulation experiments (0.28 m(2); 38.8 mm h(-1)) to determine the soil losses in naveline orange plantations with different ages of abandonment (1, 2, 3, 5, 7 and 10 years of abandonment) which will allow for an understanding of the temporal changes in soil and water losses after abandonment. Moreover, these results were also compared with an active plantation (0). The results show that the soils of the active orange plantations have higher runoff discharges and higher erosion rates due to the use of herbicides than the plots after abandonment. Once the soil is abandoned for one year, the plant recovery reaches 33% of the cover and the erosion rate drops one order of magnitude. This is related to the delay in the runoff generation and the increase in infiltration rates. After 2, 3, 5, 7 and 10 years, the soil reduced bulk density, increase in organic matter, plant cover, and soil erosion rates were found negligible. We conclude that the abandonment of orange plantations reduces soil and water losses and can serve as a nature-based solution to restore the soil services, goods, and resources. The reduction in the soil losses was exponential (from 607.4 g m(-2) in the active plot to 7.1 g m(-2) in the 10-year abandoned one) but the water losses were linear (from 77.2 in active plantations till 12.8% in the 10-year abandoned ones)This paper is part of the results of research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE-FP7 (ENV.2013.6.2-4)Cerda, A.; Ackermann, O.; Terol, E.; Rodrigo-Comino, J. (2019). Impact of Farmland Abandonment on Water Resources and Soil Conservation in Citrus Plantations in Eastern Spain. Water. 11(4):824-839. https://doi.org/10.3390/w11040824S824839114Stefler, D., Pikhart, H., Kubinova, R., Pajak, A., Stepaniak, U., Malyutina, S., … Bobak, M. (2015). Fruit and vegetable consumption and mortality in Eastern Europe: Longitudinal results from the Health, Alcohol and Psychosocial Factors in Eastern Europe study. European Journal of Preventive Cardiology, 23(5), 493-501. doi:10.1177/2047487315582320Alford, M., Barrientos, S., & Visser, M. (2017). Multi-scalar Labour Agency in Global Production Networks: Contestation and Crisis in the South African Fruit Sector. Development and Change, 48(4), 721-745. doi:10.1111/dech.12317Cerdà, A., Rodrigo-Comino, J., Giménez-Morera, A., Novara, A., Pulido, M., Kapović-Solomun, M., & Keesstra, S. D. (2018). Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations. Land Use Policy, 75, 734-745. doi:10.1016/j.landusepol.2017.12.052Ortega-Reig, M., Sanchis-Ibor, C., Palau-Salvador, G., García-Mollá, M., & Avellá-Reus, L. (2017). Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain. Agricultural Water Management, 187, 164-172. doi:10.1016/j.agwat.2017.03.009Cerdà, A., Rodrigo-Comino, J., Giménez-Morera, A., & Keesstra, S. D. (2017). An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land. Ecological Engineering, 108, 162-171. doi:10.1016/j.ecoleng.2017.08.028Keesstra, S. D., Rodrigo-Comino, J., Novara, A., Giménez-Morera, A., Pulido, M., Di Prima, S., & Cerdà, A. (2019). Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. CATENA, 174, 95-103. doi:10.1016/j.catena.2018.11.007Levers, C., Schneider, M., Prishchepov, A. V., Estel, S., & Kuemmerle, T. (2018). Spatial variation in determinants of agricultural land abandonment in Europe. Science of The Total Environment, 644, 95-111. doi:10.1016/j.scitotenv.2018.06.326Kou, M., Jiao, J., Yin, Q., Wang, N., Wang, Z., Li, Y., … Cao, B. (2015). Successional Trajectory Over 10 Years of Vegetation Restoration of Abandoned Slope Croplands in the Hill-Gully Region of the Loess Plateau. Land Degradation & Development, 27(4), 919-932. doi:10.1002/ldr.2356Ito, J., Nishikori, M., Toyoshi, M., & Feuer, H. N. (2016). The contribution of land exchange institutions and markets in countering farmland abandonment in Japan. Land Use Policy, 57, 582-593. doi:10.1016/j.landusepol.2016.06.020Lasanta, T., Arnáez, J., Pascual, N., Ruiz-Flaño, P., Errea, M. P., & Lana-Renault, N. (2017). Space–time process and drivers of land abandonment in Europe. CATENA, 149, 810-823. doi:10.1016/j.catena.2016.02.024Cerdà, A. (1997). Soil erosion after land abandonment in a semiarid environment of southeastern Spain. Arid Soil Research and Rehabilitation, 11(2), 163-176. doi:10.1080/15324989709381469García-Ruiz, J. M., & Lana-Renault, N. (2011). Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region – A review. Agriculture, Ecosystems & Environment, 140(3-4), 317-338. doi:10.1016/j.agee.2011.01.003Cerdà, A., Rodrigo-Comino, J., Novara, A., Brevik, E. C., Vaezi, A. R., Pulido, M., … Keesstra, S. D. (2018). Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Progress in Physical Geography: Earth and Environment, 42(2), 202-219. doi:10.1177/0309133318758521RODRIGO-COMINO, J., MARTÍNEZ-HERNÁNDEZ, C., ISERLOH, T., & CERDÀ, A. (2018). Contrasted Impact of Land Abandonment on Soil Erosion in Mediterranean Agriculture Fields. Pedosphere, 28(4), 617-631. doi:10.1016/s1002-0160(17)60441-7Vidal-Macua, J. J., Ninyerola, M., Zabala, A., Domingo-Marimon, C., Gonzalez-Guerrero, O., & Pons, X. (2018). Environmental and socioeconomic factors of abandonment of rainfed and irrigated crops in northeast Spain. Applied Geography, 90, 155-174. doi:10.1016/j.apgeog.2017.12.005Alonso‐Sarría, F., Martínez‐Hernández, C., Romero‐Díaz, A., Cánovas‐García, F., & Gomariz‐Castillo, F. (2015). Main Environmental Features Leading to Recent Land Abandonment in Murcia Region (Southeast Spain). Land Degradation & Development, 27(3), 654-670. doi:10.1002/ldr.2447Gispert, M., Pardini, G., Colldecarrera, M., Emran, M., & Doni, S. (2017). Water erosion and soil properties patterns along selected rainfall events in cultivated and abandoned terraced fields under renaturalisation. CATENA, 155, 114-126. doi:10.1016/j.catena.2017.03.010Horel, Á., Tóth, E., Gelybó, G., Kása, I., Bakacsi, Z., & Farkas, C. (2015). Effects of Land Use and Management on SoilHydraulic Properties. Open Geosciences, 7(1). doi:10.1515/geo-2015-0053Yu, W., Jiao, J., Chen, Y., Wang, D., Wang, N., & Zhao, H. (2016). Seed Removal due to Overland Flow on Abandoned Slopes in the Chinese Hilly Gullied Loess Plateau Region. Land Degradation & Development, 28(1), 274-282. doi:10.1002/ldr.2519Löw, F., Fliemann, E., Abdullaev, I., Conrad, C., & Lamers, J. P. A. (2015). Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Applied Geography, 62, 377-390. doi:10.1016/j.apgeog.2015.05.009Verheyen, K., Bossuyt, B., Hermy, M., & Tack, G. (1999). The land use history (1278-1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. Journal of Biogeography, 26(5), 1115-1128. doi:10.1046/j.1365-2699.1999.00340.xWALKLEY, A., & BLACK, I. A. (1934). AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Science, 37(1), 29-38. doi:10.1097/00010694-193401000-00003Iserloh, T., Fister, W., Seeger, M., Willger, H., & Ries, J. B. (2012). A small portable rainfall simulator for reproducible experiments on soil erosion. Soil and Tillage Research, 124, 131-137. doi:10.1016/j.still.2012.05.016Grădinaru, S. R., Kienast, F., & Psomas, A. (2019). Using multi-seasonal Landsat imagery for rapid identification of abandoned land in areas affected by urban sprawl. Ecological Indicators, 96, 79-86. doi:10.1016/j.ecolind.2017.06.022Basualdo, M., Huykman, N., Volante, J. N., Paruelo, J. M., & Piñeiro, G. (2019). Lost forever? Ecosystem functional changes occurring after agricultural abandonment and forest recovery in the semiarid Chaco forests. Science of The Total Environment, 650, 1537-1546. doi:10.1016/j.scitotenv.2018.09.001Yin, H., Prishchepov, A. V., Kuemmerle, T., Bleyhl, B., Buchner, J., & Radeloff, V. C. (2018). Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sensing of Environment, 210, 12-24. doi:10.1016/j.rse.2018.02.050Yin, H., Butsic, V., Buchner, J., Kuemmerle, T., Prishchepov, A. V., Baumann, M., … Radeloff, V. C. (2019). Agricultural abandonment and re-cultivation during and after the Chechen Wars in the northern Caucasus. Global Environmental Change, 55, 149-159. doi:10.1016/j.gloenvcha.2019.01.005Baba, Y. G., Tanaka, K., & Kusumoto, Y. (2019). Changes in spider diversity and community structure along abandonment and vegetation succession in rice paddy ecosystems. Ecological Engineering, 127, 235-244. doi:10.1016/j.ecoleng.2018.12.007Klee, R. J., Zimmerman, K. I., & Daneshgar, P. P. (2019). Community Succession after Cranberry Bog Abandonment in the New Jersey Pinelands. Wetlands, 39(4), 777-788. doi:10.1007/s13157-019-01129-yAgnoletti, M., Errico, A., Santoro, A., Dani, A., & Preti, F. (2019). Terraced Landscapes and Hydrogeological Risk. Effects of Land Abandonment in Cinque Terre (Italy) during Severe Rainfall Events. Sustainability, 11(1), 235. doi:10.3390/su11010235Fredh, E. D., Lagerås, P., Mazier, F., Björkman, L., Lindbladh, M., & Broström, A. (2019). Farm establishment, abandonment and agricultural practices during the last 1,300 years: a case study from southern Sweden based on pollen records and the LOVE model. Vegetation History and Archaeobotany, 28(5), 529-544. doi:10.1007/s00334-019-00712-xLasanta, T., Nadal-Romero, E., & Arnáez, J. (2015). Managing abandoned farmland to control the impact of re-vegetation on the environment. The state of the art in Europe. Environmental Science & Policy, 52, 99-109. doi:10.1016/j.envsci.2015.05.012Bell, S., Alves, S., Silveirinha de Oliveira, E., & Zuin, A. (2010). Migration and Land Use Change in Europe: A Review. Living Reviews in Landscape Research, 4. doi:10.12942/lrlr-2010-2Rodrigo-Comino, J., Senciales, J. M., Sillero-Medina, J. A., Gyasi-Agyei, Y., Ruiz-Sinoga, J. D., & Ries, J. B. (2019). Analysis of Weather-Type-Induced Soil Erosion in Cultivated and Poorly Managed Abandoned Sloping Vineyards in the Axarquía Region (Málaga, Spain). Air, Soil and Water Research, 12, 117862211983940. doi:10.1177/1178622119839403Carter, D. L. (1993). Furrow Irrigation Erosion Lowers Soil Productivity. Journal of Irrigation and Drainage Engineering, 119(6), 964-974. doi:10.1061/(asce)0733-9437(1993)119:6(964)Al-Ghobari, H. M., & Dewidar, A. Z. (2018). Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions. Agricultural Water Management, 209, 55-61. doi:10.1016/j.agwat.2018.07.010Cammeraat, E. L. H., Cerdà, A., & Imeson, A. C. (2010). Ecohydrological adaptation of soils following land abandonment in a semi-arid environment. Ecohydrology, 3(4), 421-430. doi:10.1002/eco.161Osawa, T., Kohyama, K., & Mitsuhashi, H. (2016). Trade-off relationship between modern agriculture and biodiversity: Heavy consolidation work has a long-term negative impact on plant species diversity. Land Use Policy, 54, 78-84. doi:10.1016/j.landusepol.2016.02.001Hannula, S. E., Morriën, E., de Hollander, M., van der Putten, W. H., van Veen, J. A., & de Boer, W. (2017). Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. The ISME Journal, 11(10), 2294-2304. doi:10.1038/ismej.2017.90Cavani, L., Manici, L. M., Caputo, F., Peruzzi, E., & Ciavatta, C. (2016). Ecological restoration of a copper polluted vineyard: Long-term impact of farmland abandonment on soil bio-chemical properties and microbial communities. Journal of Environmental Management, 182, 37-47. doi:10.1016/j.jenvman.2016.07.050He, B., Wang, H., Huang, L., Liu, J., & Chen, Z. (2017). A new indicator of ecosystem water use efficiency based on surface soil moisture retrieved from remote sensing. Ecological Indicators, 75, 10-16. doi:10.1016/j.ecolind.2016.12.017Ramos, M. C., & Martínez-Casasnovas, J. A. (2006). Impact of land levelling on soil moisture and runoff variability in vineyards under different rainfall distributions in a Mediterranean climate and its influence on crop productivity. Journal of Hydrology, 321(1-4), 131-146. doi:10.1016/j.jhydrol.2005.07.055AL-SHAMMARY, A. A. G., KOUZANI, A. Z., KAYNAK, A., KHOO, S. Y., NORTON, M., & GATES, W. (2018). Soil Bulk Density Estimation Methods: A Review. Pedosphere, 28(4), 581-596. doi:10.1016/s1002-0160(18)60034-7Bienes, R., Marques, M. J., Sastre, B., García-Díaz, A., & Ruiz-Colmenero, M. (2016). Eleven years after shrub revegetation in semiarid eroded soils. Influence in soil properties. Geoderma, 273, 106-114. doi:10.1016/j.geoderma.2016.03.023Jomaa, S., Barry, D. A., Brovelli, A., Heng, B. C. P., Sander, G. C., Parlange, J.-Y., & Rose, C. W. (2012). Rain splash soil erosion estimation in the presence of rock fragments. CATENA, 92, 38-48. doi:10.1016/j.catena.2011.11.008Poesen, J., Wesemael, B. van, Govers, G., Martinez-Fernandez, J., Desmet, P., Vandaele, K., … Degraer, G. (1997). Patterns of rock fragment cover generated by tillage erosion. Geomorphology, 18(3-4), 183-197. doi:10.1016/s0169-555x(96)00025-6Šraj, M., Brilly, M., & Mikoš, M. (2008). Rainfall interception by two deciduous Mediterranean forests of contrasting stature in Slovenia. Agricultural and Forest Meteorology, 148(1), 121-134. doi:10.1016/j.agrformet.2007.09.007Leuning, R., Condon, A. G., Dunin, F. X., Zegelin, S., & Denmead, O. T. (1994). Rainfall interception and evaporation from soil below a wheat canopy. Agricultural and Forest Meteorology, 67(3-4), 221-238. doi:10.1016/0168-1923(94)90004-3Facelli, J. M., & Pickett, S. T. A. (1991). Plant Litter: Light Interception and Effects on an Old-Field Plant Community. Ecology, 72(3), 1024-1031. doi:10.2307/1940602Llorens, J., Gil, E., Llop, J., & Queraltó, M. (2011). Georeferenced LiDAR 3D Vine Plantation Map Generation. Sensors, 11(6), 6237-6256. doi:10.3390/s110606237Hou, J., Fu, B., Liu, Y., Lu, N., Gao, G., & Zhou, J. (2014). Ecological and hydrological response of farmlands abandoned for different lengths of time: Evidence from the Loess Hill Slope of China. Global and Planetary Change, 113, 59-67. doi:10.1016/j.gloplacha.2013.12.008Beguería, S., López-Moreno, J. I., Lorente, A., Seeger, M., & García-Ruiz, J. M. (2003). Assessing the Effect of Climate Oscillations and Land-use Changes on Streamflow in the Central Spanish Pyrenees. AMBIO: A Journal of the Human Environment, 32(4), 283-286. doi:10.1579/0044-7447-32.4.283Keesstra, S. D., Bruijnzeel, L. A., & van Huissteden, J. (2009). Meso-scale catchment sediment budgets: combining field surveys and modeling in the Dragonja catchment, southwest Slovenia. Earth Surface Processes and Landforms, 34(11), 1547-1561. doi:10.1002/esp.1846Moreira, M. Z., Sternberg, L. da S. L., & Nepstad, D. C. (2000). Plant and Soil, 222(1/2), 95-107. doi:10.1023/a:1004773217189Rambousková, H. (1981). Water dynamics of some abandoned fields of the Bohemian Karst. Folia Geobotanica et Phytotaxonomica, 16(2), 133-152. doi:10.1007/bf02851858Farrick, K. K., & Price, J. S. (2009). Ericaceous shrubs on abandoned block-cut peatlands: implications for soil water availability andSphagnumrestoration. Ecohydrology, 2(4), 530-540. doi:10.1002/eco.77Ruecker, G., Schad, P., Alcubilla, M. M., & Ferrer, C. (1998). Natural regeneration of degraded soils and site changes on abandoned agricultural terraces in Mediterranean Spain. Land Degradation & Development, 9(2), 179-188. doi:10.1002/(sici)1099-145x(199803/04)9:23.0.co;2-rKoulouri, M., & Giourga, C. (2007). Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands. CATENA, 69(3), 274-281. doi:10.1016/j.catena.2006.07.001Lesschen, J. P., Cammeraat, L. H., & Nieman, T. (2008). Erosion and terrace failure due to agricultural land abandonment in a semi-arid environment. Earth Surface Processes and Landforms, 33(10), 1574-1584. doi:10.1002/esp.1676Liu, Y., Tao, Y., Wan, K. Y., Zhang, G. S., Liu, D. B., Xiong, G. Y., & Chen, F. (2012). Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China. Agricultural Water Management, 110, 34-40. doi:10.1016/j.agwat.2012.03.011Arnaez, J., Lasanta, T., Errea, M. P., & Ortigosa, L. (2010). Land abandonment, landscape evolution, and soil erosion in a Spanish Mediterranean mountain region: The case of Camero Viejo. Land Degradation & Development, 22(6), 537-550. doi:10.1002/ldr.1032Nunes, A. N., Coelho, C. O. A., de Almeida, A. C., & Figueiredo, A. (2010). Soil erosion and hydrological response to land abandonment in a central inland area of Portugal. Land Degradation & Development, 21(3), 260-273. doi:10.1002/ldr.973Smetanová, A., Follain, S., David, M., Ciampalini, R., Raclot, D., Crabit, A., & Le Bissonnais, Y. (2019). Landscaping compromises for land degradation neutrality: The case of soil erosion in a Mediterranean agricultural landscape. Journal of Environmental Management, 235, 282-292. doi:10.1016/j.jenvman.2019.01.063Lucas-Borja, M. E., Zema, D. A., Carrà, B. G., Cerdà, A., Plaza-Alvarez, P. A., Cózar, J. S., … de las Heras, J. (2018). Short-term changes in infiltration between straw mulched and non-mulched soils after wildfire in Mediterranean forest ecosystems. Ecological Engineering, 122, 27-31. doi:10.1016/j.ecoleng.2018.07.018Tang, S., Guo, J., Li, S., Li, J., Xie, S., Zhai, X., … Wang, K. (2019). Synthesis of soil carbon losses in response to conversion of grassland to agriculture land. Soil and Tillage Research, 185, 29-35. doi:10.1016/j.still.2018.08.011Xie, Y., Lin, H., Ye, Y., & Ren, X. (2019). Changes in soil erosion in cropland in northeastern China over the past 300 years. CATENA, 176, 410-418. doi:10.1016/j.catena.2019.01.026García-Llamas, P., Suárez-Seoane, S., Taboada, A., Fernández-Manso, A., Quintano, C., Fernández-García, V., … Calvo, L. (2019). Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems. Forest Ecology and Management, 433, 24-32. doi:10.1016/j.foreco.2018.10.051Trukhachev, A. (2015). Methodology for Evaluating the Rural Tourism Potentials: A Tool to Ensure Sustainable Development of Rural Settlements. Sustainability, 7(3), 3052-3070. doi:10.3390/su7033052Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global Change and the Ecology of Cities. Science, 319(5864), 756-760. doi:10.1126/science.1150195Ackermann, O., Zhevelev, H. M., & Svoray, T. (2019). Agricultural systems and terrace pattern distribution and preservation along climatic gradient: From sub-humid mediterranean to arid conditions. Quaternary International, 502, 319-326. doi:10.1016/j.quaint.2018.09.032Ackermann, O., Maeir, A. M., Frumin, S. S., Svoray, T., Weiss, E., Zhevelev, H. M., & Horwitz, L. K. (2017). The Paleo-Anthropocene and the Genesis of the Current Landscape of Israel. Journal of Landscape Ecology, 10(3), 109-140. doi:10.1515/jlecol-2017-0029Ackermann, O., Zhevelev, H. M., & Svoray, T. (2013). Sarcopoterium spinosum from mosaic structure to matrix structure: Impact of calcrete (Nari) on vegetation in a Mediterranean semi-arid landscape. CATENA, 101, 79-91. doi:10.1016/j.catena.2012.10.001Ibáñez, J., Contador, J. F. L., Schnabel, S., Fernández, M. P., & Valderrama, J. M. (2014). A model-based integrated assessment of land degradation by water erosion in a valuable Spanish rangeland. Environmental Modelling & Software, 55, 201-213. doi:10.1016/j.envsoft.2014.01.026DI PRIMA, S., RODRIGO-COMINO, J., NOVARA, A., IOVINO, M., PIRASTRU, M., KEESSTRA, S., & CERDÀ, A. (2018). Soil Physical Quality of Citrus Orchards Under Tillage, Herbicide, and Organic Managements. Pedosphere, 28(3), 463-477. doi:10.1016/s1002-0160(18)60025-6Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development, 32(2), 501-529. doi:10.1007/s13593-011-0068-

    Spatio-temporal vegetation recuperation after a grassland fire in Lithuania

    Get PDF
    The aim of this work is to study the spatio-temporal effects of a grassland fire in Lithuania. Immediately after the fire, a experimental plot was designed in a east-faced slope. Vegetation cover and height were measured 10, 17, 31 and 46 days after the fire (vegetation cover was only measured until 31 days after the fire because in the last measurement campaign the plot was completely covered). The results showed that vegetation recovered very fast. Ten days after the fire vegetation cover and height distribution were heterogeneous, decreasing with the time due to vegetation spread. Vegetation recovered was specially observed between 17 and 31 days after the fire due vegetation recuperation. This increase might reduce the soil vulnerability to erosion However, the spatial structure of this recuperation was different in both variables, and spatial autocorrelation was higher in vegetation cover than vegetation in height in all measurements. Despite these differences, vegetation cover and height values were higher in the bottom part of the plot that was attributed to lower fire severity and ash and nutrient transport.Ministerio de Ciencia e Innovación CGL2010-21670-C02-0

    Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil

    Full text link
    [EN] Saturated soil hydraulic conductivity, K-s, data collected by ponding infiltrometer methods and usual experimental procedures could be unusable for interpreting field hydrological processes and particularly rainfall infiltration. The K-s values determined by an infiltrometer experiment carried out by applying water at a relatively large distance from the soil surface could however be more appropriate to explain surface runoff generation phenomena during intense rainfall events. In this study, a link between rainfall simulation and ponding infiltrometer experiments was established for a sandy-loam soil. The height of water pouring for the infiltrometer run was chosen, establishing a similarity between the gravitational potential energy of the applied water, E-p, and the rainfall kinetic energy, E-k. To test the soundness of this procedure, the soil was sampled with the Beerkan estimation of soil transfer parameters procedure of soil hydraulic characterization and two heights of water pouring (0.03m, i.e., usual procedure, and 0.34m, yielding E-p=E-k). Then, a comparison between experimental steady-state infiltration rates, i(sR), measured with rainfall simulation experiments determining runoff production and K-s values for the two water pouring heights was carried out in order to discriminate between theoretically possible (i(sR)K(s)) and impossible (i(sR)3.0.co;2-vCerdà, A. (1999). Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions. Water Resources Research, 35(1), 319-328. doi:10.1029/98wr01659Cerdà, A. (2000). Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia. Soil and Tillage Research, 57(3), 159-166. doi:10.1016/s0167-1987(00)00155-0Cerdà, A. (2001). Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52(1), 59-68. doi:10.1046/j.1365-2389.2001.00354.xCerdà, A., & Doerr, S. H. (2007). Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrological Processes, 21(17), 2325-2336. doi:10.1002/hyp.6755Cerdà, A., Ibáñez, S., & Calvo, A. (1997). Design and operation of a small and portable rainfall simulator for rugged terrain. Soil Technology, 11(2), 163-170. doi:10.1016/s0933-3630(96)00135-3Di Prima, S. (2015). Automated single ring infiltrometer with a low-cost microcontroller circuit. Computers and Electronics in Agriculture, 118, 390-395. doi:10.1016/j.compag.2015.09.022Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., & Angulo-Jaramillo, R. (2016). Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20-34. doi:10.1016/j.geoderma.2015.08.006Diodato, N., Verstraeten, G., & Bellocchi, G. (2012). DECADAL MODELLING OF RAINFALL EROSIVITY IN BELGIUM. Land Degradation & Development, 25(6), 511-519. doi:10.1002/ldr.2168Gee GW Bauder JW 1986 Particle-size analysis SSSA Book Series 383 411Haverkamp, R., Ross, P. J., Smettem, K. R. J., & Parlange, J. Y. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resources Research, 30(11), 2931-2935. doi:10.1029/94wr01788Iovino, M., Castellini, M., Bagarello, V., & Giordano, G. (2013). Using Static and Dynamic Indicators to Evaluate Soil Physical Quality in a Sicilian Area. Land Degradation & Development, 27(2), 200-210. doi:10.1002/ldr.2263Iserloh, T., Ries, J. B., Arnáez, J., Boix-Fayos, C., Butzen, V., Cerdà, A., … Wirtz, S. (2013). European small portable rainfall simulators: A comparison of rainfall characteristics. CATENA, 110, 100-112. doi:10.1016/j.catena.2013.05.013Iserloh, T., Ries, J. B., Cerdà, A., Echeverría, M. T., Fister, W., Geißler, C., … Seeger, M. (2013). Comparative measurements with seven rainfall simulators on uniform bare fallow land. Zeitschrift für Geomorphologie, Supplementary Issues, 57(1), 11-26. doi:10.1127/0372-8854/2012/s-00085Keesstra, S., Pereira, P., Novara, A., Brevik, E. C., Azorin-Molina, C., Parras-Alcántara, L., … Cerdà, A. (2016). Effects of soil management techniques on soil water erosion in apricot orchards. Science of The Total Environment, 551-552, 357-366. doi:10.1016/j.scitotenv.2016.01.182B. A. King, & D. L. Bjorneberg. (2012). Transient Soil Surface Sealing and Infiltration Model for Bare Soil under Droplet Impact. Transactions of the ASABE, 55(3), 937-945. doi:10.13031/2013.41525Lado, M., Paz, A., & Ben-Hur, M. (2004). Organic Matter and Aggregate-Size Interactions in Saturated Hydraulic Conductivity. Soil Science Society of America Journal, 68(1), 234-242. doi:10.2136/sssaj2004.2340Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., Letellier, L., Gaudet, J. P., Winiarski, T., & Delolme, C. (2010). Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma, 156(3-4), 316-325. doi:10.1016/j.geoderma.2010.02.031Lassabatère, L., Angulo-Jaramillo, R., Soria Ugalde, J. M., Cuenca, R., Braud, I., & Haverkamp, R. (2006). Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments-BEST. Soil Science Society of America Journal, 70(2), 521-532. doi:10.2136/sssaj2005.0026Lassabatere, L., Angulo-Jaramillo, R., Soria-Ugalde, J. M., Šimůnek, J., & Haverkamp, R. (2009). Numerical evaluation of a set of analytical infiltration equations. Water Resources Research, 45(12). doi:10.1029/2009wr007941Lassabatere, L., Yilmaz, D., Peyrard, X., Peyneau, P. E., Lenoir, T., Šimůnek, J., & Angulo-Jaramillo, R. (2014). New Analytical Model for Cumulative Infiltration into Dual-Permeability Soils. Vadose Zone Journal, 13(12), vzj2013.10.0181. doi:10.2136/vzj2013.10.0181Lassu, T., Seeger, M., Peters, P., & Keesstra, S. D. (2015). The Wageningen Rainfall Simulator: Set-up and Calibration of an Indoor Nozzle-Type Rainfall Simulator for Soil Erosion Studies. Land Degradation & Development, 26(6), 604-612. doi:10.1002/ldr.2360BISSONNAIS, Y. (1996). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 47(4), 425-437. doi:10.1111/j.1365-2389.1996.tb01843.xLi, X.-Y., González, A., & Solé-Benet, A. (2005). Laboratory methods for the estimation of infiltration rate of soil crusts in the Tabernas Desert badlands. CATENA, 60(3), 255-266. doi:10.1016/j.catena.2004.12.004Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association, 62(318), 399-402. doi:10.1080/01621459.1967.10482916Liu, H., Lei, T. W., Zhao, J., Yuan, C. P., Fan, Y. T., & Qu, L. Q. (2011). Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method. Journal of Hydrology, 396(1-2), 24-32. doi:10.1016/j.jhydrol.2010.10.028Mualem, Y., Assouline, S., & Rohdenburg, H. (1990). Rainfall induced soil seal (A) A critical review of observations and models. CATENA, 17(2), 185-203. doi:10.1016/0341-8162(90)90008-2Mubarak, I., Angulo-Jaramillo, R., Mailhol, J. C., Ruelle, P., Khaledian, M., & Vauclin, M. (2010). Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agricultural Water Management, 97(10), 1517-1526. doi:10.1016/j.agwat.2010.05.005Nunes, A. N., Lourenço, L., Vieira, A., & Bento-Gonçalves, A. (2014). Precipitation and Erosivity in Southern Portugal: Seasonal Variability and Trends (1950-2008). Land Degradation & Development, 27(2), 211-222. doi:10.1002/ldr.2265Prosdocimi, M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., & Cerdà, A. (2016). The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, 547, 323-330. doi:10.1016/j.scitotenv.2015.12.076Reynolds, W. D., Bowman, B. T., Brunke, R. R., Drury, C. F., & Tan, C. S. (2000). Comparison of Tension Infiltrometer, Pressure Infiltrometer, and Soil Core Estimates of Saturated Hydraulic Conductivity. Soil Science Society of America Journal, 64(2), 478-484. doi:10.2136/sssaj2000.642478xRockström, J., Jansson, P.-E., & Barron, J. (1998). Seasonal rainfall partitioning under runon and runoff conditions on sandy soil in Niger. On-farm measurements and water balance modelling. Journal of Hydrology, 210(1-4), 68-92. doi:10.1016/s0022-1694(98)00176-0Shainberg, I., & Singer, M. J. (1988). Drop Impact Energy-Soil Exchangeable Sodium Percentage Interactions in Seal Formation. Soil Science Society of America Journal, 52(5), 1449-1452. doi:10.2136/sssaj1988.03615995005200050046xShaver, T. M., Peterson, G. A., Ahuja, L. R., & Westfall, D. G. (2013). Soil sorptivity enhancement with crop residue accumulation in semiarid dryland no-till agroecosystems. Geoderma, 192, 254-258. doi:10.1016/j.geoderma.2012.08.014Somaratne, N. M., & Smettem, K. R. J. (1993). Effect of cultivation and raindrop impact on the surface hydraulic properties of an Alfisol under wheat. Soil and Tillage Research, 26(2), 115-125. doi:10.1016/0167-1987(93)90038-qSouza, E. S., Antonino, A. C. D., Heck, R. J., Montenegro, S. M. G. L., Lima, J. R. S., Sampaio, E. V. S. B., … Vauclin, M. (2014). Effect of crusting on the physical and hydraulic properties of a soil cropped with Castor beans (Ricinus communis L.) in the northeastern region of Brazil. Soil and Tillage Research, 141, 55-61. doi:10.1016/j.still.2014.04.004Tricker, A. S. (1979). The design of a portable rainfall simulator infiltrometer. Journal of Hydrology, 41(1-2), 143-147. doi:10.1016/0022-1694(79)90111-2Turner, R. K., van den Bergh, J. C. J. M., Söderqvist, T., Barendregt, A., van der Straaten, J., Maltby, E., & van Ierland, E. C. (2000). Ecological-economic analysis of wetlands: scientific integration for management and policy. Ecological Economics, 35(1), 7-23. doi:10.1016/s0921-8009(00)00164-6Van De Giesen, N. C., Stomph, T. J., & de Ridder, N. (2000). Scale effects of Hortonian overland flow and rainfall-runoff dynamics in a West African catena landscape. Hydrological Processes, 14(1), 165-175. doi:10.1002/(sici)1099-1085(200001)14:13.0.co;2-1Vandervaere, J.-P., Vauclin, M., Haverkamp, R., Peugeot, C., Thony, J.-L., & Gilfedder, M. (1998). PREDICTION OF CRUST-INDUCED SURFACE RUNOFF WITH DISC INFILTROMETER DATA. Soil Science, 163(1), 9-21. doi:10.1097/00010694-199801000-00003White, I., Sully, M. J., & Melville, M. D. (1989). Use and Hydrological Robustness of Time-to-Incipient-Ponding. Soil Science Society of America Journal, 53(5), 1343-1346. doi:10.2136/sssaj1989.03615995005300050007xXu, X., Kiely, G., & Lewis, C. (2009). Estimation and analysis of soil hydraulic properties through infiltration experiments: comparison of BEST and DL fitting methods. Soil Use and Management, 25(4), 354-361. doi:10.1111/j.1475-2743.2009.00218.xYilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., & Legret, M. (2010). Hydrodynamic Characterization of Basic Oxygen Furnace Slag through an Adapted BEST Method. Vadose Zone Journal, 9(1), 107. doi:10.2136/vzj2009.0039YOUNGS, E. G. (1987). Estimating hydraulic conductivity values from ring infiltrometer measurements. Journal of Soil Science, 38(4), 623-632. doi:10.1111/j.1365-2389.1987.tb02159.xZimmermann, A., Schinn, D. S., Francke, T., Elsenbeer, H., & Zimmermann, B. (2013). Uncovering patterns of near-surface saturated hydraulic conductivity in an overland flow-controlled landscape. Geoderma, 195-196, 1-11. doi:10.1016/j.geoderma.2012.11.00

    Comparing transient and steady-state analysis of single-ring infiltrometer data for an abandoned field affected by fire in Eastern Spain

    Get PDF
    Este estudio tenía por objeto determinar la conductividad hidráulica del suelo saturado de campo, Kfs, de un campo no controlado afectado por el fuego mediante recorridos con infiltrómetro de anillo único y el uso de procedimientos de análisis de datos en estado transitorio y estacionario. El muestreo y las mediciones se llevaron a cabo en 2012 y 2017 en un campo afectado por el fuego (sitio quemado) y en un sitio vecino no afectado (sitio de control). Se investigó el potencial de predicción de los diferentes procedimientos de análisis de datos (es decir, de estado transitorio y de estado estacionario) para obtener estimaciones adecuadas del Kfs. En particular, se compararon el método WU1 transitorio y los métodos BB, WU2 y OPD. Se utilizó el método de linealización acumulativa (CL) para aplicar el método WU1. Se obtuvieron valores de Kfs que oscilaban entre 0,87 y 4,21 mm.h-1, dependiendo del método de análisis de datos considerado. El método WU1 no arrojó estimaciones de Kfs significativamente diferentes entre los sitios muestreados a lo largo del período de cinco años, debido al desempeño generalmente deficiente del método CL, que echó a perder la caracterización hidráulica del suelo. En particular, sólo se obtuvieron buenos ajustes en el 23% de los casos. Los métodos BB, WU2 y OPD, con una caracterización basada exclusivamente en un proceso de infiltración estabilizado, produjeron una variabilidad apreciablemente menor de los datos de Kfs en comparación con el método WU1. Se llegó a la conclusión de que los métodos de estado estacionario eran más apropiados para detectar cambios leves de Kfs en las caracterizaciones hidráulicas del suelo después del incendio. Nuestros resultados mostraron un cierto grado de degradación del suelo en el lugar quemado con una reducción inmediata de la materia orgánica del suelo y un aumento progresivo de la densidad aparente del suelo durante los cinco años siguientes al incendio. Este empobrecimiento general dio lugar a una ligera pero significativa disminución de la conductividad hidráulica del suelo saturado por el campo.This study aimed at determining the field-saturated soil hydraulic conductivity, Kfs, of an unmanaged field affected by fire by means of single-ring infiltrometer runs and the use of transient and steady-state data analysis procedures. Sampling and measurements were carried out in 2012 and 2017 in a fire-affected field (burnt site) and in a neighboring non-affected site (control site). The predictive potential of different data analysis procedures (i.e., transient and steady-state) to yield proper Kfs estimates was investigated. In particular, the transient WU1 method and the BB, WU2 and OPD methods were compared. The cumulative linearization (CL) method was used to apply the WU1 method. Values of Kfs ranging from 0.87 to 4.21 mm.h-1 were obtained, depending on the considered data analysis method. The WU1 method did not yield significantly different Kfs estimates between the sampled sites throughout the five-year period, due to the generally poor performance of the CL method, which spoiled the soil hydraulic characterization. In particular, good fits were only obtained in 23% of the cases. The BB, WU2 and the OPD methods, with a characterization based exclusively on a stabilized infiltration process, yielded an appreciably lower variability of the Kfs data as compared with the WU1 method. It was concluded that steady-state methods were more appropriate for detecting slight changes of Kfs in post-fire soil hydraulic characterizations. Our results showed a certain degree of soil degradation at the burnt site with an immediate reduction of the soil organic matter and a progressive increase of the soil bulk density during the five years following the fire. This general impoverishment resulted in a slight but significant decrease in the field-saturated soil hydraulic conductivity.• POSTFIRE Project CGL2013-47862-C2-1 y 2-R • POSTFIRE-CARE Project CGL2016-75178-C2-2-RpeerReviewe

    Precipitación y producción de agua en el Macizo del Caroig, Este de la Península Ibérica. Evento de escorrentía a escala de parcela durante una crecida torrencial en el barranco de Benacancil

    Full text link
    [EN] Floods are a consequence of extreme rainfall events. Although surface runoff generation is the origin of discharge, flood research usually focuses on lowlands where the impact is higher. Runoff and sediment delivery at slope and pedon scale receiving much less attention in the effort to understand flood behaviour in time and space. This is especially relevant in areas where, due to climatic and hydrogeological conditions, streams are ephemeral, so-called dry rivers (¿wadis¿, "ramblas" or ¿barrancos¿) that are widespread throughout the Mediterranean. This paper researches the relationship between water delivery at pedon and slope scale with dry river floods in Macizo del Caroig, Eastern Iberian Peninsula. Plots of 1x1, 1x2, 1x4, and 2x8 m located in the ¿El Teularet¿ Soil Erosion and Degradation Research Station were monitored from 2004 to 2014 to measure soil and water delivery. Rainfall and flow at the dry river Barranco de Benacancil were also monitored. Results show that runoff and sediment discharge were concentrated in few events during the 11 years of research. A single flood event was registered in the channel on September 28, 2009, however, the runoff was registered 160 times at the plots. Runoff discharge was dependent on the size of the plots, with larger plots yielding lower runoff discharge per unit area, suggesting short runoff-travel distance and duration. Three rainfall events contributed with 26% of the whole runoff discharge, and five achieved 56% of the runoff. We conclude that the runoff generated at the plot scale is disconnected from the main channel. From a spatial point of view, there is a decrease in runoff coefficient along the slope. From a temporal point of view, the runoff is concentrated in a few rainfall events. These results show that the runoff generated at plot and slope scale does not contribute to the floods except for rainfall events with more than 100 mm day-1. The disconnection of the runoff and sediment delivery is confirmed by the reduction in the runoff delivery at plot scale due to the control of the length of the plot (slope) on the runoff and sediment delivery.[ES] . Lasinundacionesson consecuencia de lluvias extremas. Aunque la generación de escorrentía superficial es el origen de la descarga, la investigación de inundaciones generalmente se enfoca en las tierras bajas donde el impacto es mayor. La escorrentía y la distribución de sedimentos a escala de pendiente y pedón reciben mucha menos atención en la comprensión del comportamiento de las inundaciones en el tiempo y el espacio. Esto es especialmente relevante en zonas donde, debido a las condiciones climáticas e hidrogeológicas, los cauces son efímeros. Son los llamados ríos secos (¿wadis¿, ¿ramblas¿ o ¿barrancos¿) muy extendidos por todo el Mediterráneo. Este artículo investiga la relación entre el suministro de agua a escala de pedón y ladera con las crecidas de ríos secos en Macizo del Caroig, este de la Península Ibérica. Las parcelas de 1x1, 1x2, 1x4 y 2x8 m localizadas en la Estación de Investigación de Erosión y Degradación de Suelos ¿El Teularet¿ fueron monitoreadas de 2004 a 2014 para medir la producción de suelo y agua. También se monitorearon las precipitaciones y el caudal en el río seco Barranco de Benacancil. Los resultados muestran que la escorrentía y la descarga de sedimentos se concentraron en pocos eventos durante los 11 años de investigación. Se registró un solo evento de inundación en el canal el 28 de septiembre de 2009, sin embargo, la escorrentía se registró 160 veces en las parcelas. La descarga de escorrentía dependió del tamaño de las parcelas. Las parcelas más grandes produjeron una menor descarga de escorrentía por unidad de área, lo que sugiere una corta distancia y duración del recorrido de escorrentía. Tres eventos de lluvia contribuyeron con el 26% de la descarga total de la escorrentía y cinco lograron el 56% de la escorrentía. Se concluye que la escorrentía generada a escala de la parcela está desconectada del canal principal. Desde un punto de vista espacial, hay una disminución en el coeficiente de escorrentía a lo largo de la pendiente. Desde un punto de vista temporal, la escorrentía se concentra en unos pocos eventos de lluvia. Estos resultados muestran que la escorrentía generada a escala de parcela y pendiente no contribuyen a las inundaciones excepto para eventos de lluvia con más de 100 mm día-1 . La desconexión de la escorrentía y la entrega de sedimentos se confirma por la reducción de la escorrentía a escala de parcela debido al control de la longitud (pendiente) sobre la escorrentía y la entrega de sedimentos.Artemi Cerda thanks the Co-operative Research program from the OECD (Biological Resource Management for Sustainable Agricultural Systems) for its support with the 2016 CRP fellowship (OCDE TAD/CRP JA00088807), POSTFIRE Project (CGL2013-47862-C2-1 and 2-R), and POSTFIRE_CARE Project (CGL2016-75178-C2-2-R) sponsored by the Spanish Ministry of Economy and Competitiveness and AEI/FEDER, UE. This paper was written as a result of the collaboration that was initiated due to the COST ActionES1306: Connecting European Connectivity research and COST CA18135 FIRElinks: Fire in the Earth System. Science and Society. We wish to thank the Department of Geography secretariat team (Nieves Gomez, Nieves Dominguez, and Susana Tomas) for their support for three decades to our research at the Soil Erosion and Degradation Research team (SEDER), with special thanks to the scientific researchers that as visitors from other research teams contributed to the SEDER research. And we also thank the Laboratory for Geomorphology technicians (Leon Navarro) for the key contribution to our research. The collaboration of the Geography and Environmental Sciences students was fruitful and enjoyable.Cerda, A.; Novara, A.; Dlapa, P.; Lopez-Vicente, M.; Ubeda, X.; Popovic, Z.; Mekonnen, M.... (2021). Rainfall and water yield in Macizo del Caroig, Eastern Iberian Peninsula. Event runoff at plot scale during a rare flash flood at the Barranco de Benacancil. Cuadernos de Investigación Geográfica. 47(1):95-119. https://doi.org/10.18172/cig.48339511947

    How the EU Soil Observatory contributes to a stronger soil erosion community

    Get PDF
    New policy developments have emerged in relation to soil conservation after 2020. The Common Agricultural Policy (CAP) 2023–2027, the proposal for a Soil Monitoring Law and the mission ‘A Soil Deal for Europe’ have shaped a new policy framework at EU level, which requires updated assessments on soil erosion and land degradation. The EU Soil Observatory (EUSO) successfully organised a scientific workshop on ‘Soil erosion for the EU’ in June 2022. The event has seen the participation of more than 330 people from 63 countries, addressing important topics such as (i) management practices, (ii) large scale modelling, (iii) the importance of sediments in nutrient cycle, (vi) the role of landslides and (v) laying the foundations for early career scientists. As a follow up, among the 120 abstracts submitted in the workshop, we received fifteen manuscripts, out of which nine were selected for publication in the present special issue. In this editorial, we summarize the major challenges that the soil erosion research community faces in relation to supporting the increasing role of soils in the EU Green Deal

    Short-term low-severity spring grassland fire impacts on soil extractable elements and soil ratios in Lithuania.

    Get PDF
    Spring grassland fires are common in boreal areas as a consequence of slash and burn agriculture used to remove dry grass to increase soil nutrient properties and crop production. However, fewworks have investigated fire impacts on these grassland ecosystems, especially in the immediate period after the fire. The objective of this work was to study the short-termimpacts of a spring grassland fire in Lithuania. Four days after the firewe established a 400 m2 sampling grid within the burned area and in an adjacent unburned area with the same topographical, hydrological and pedological characteristics. Wecollected topsoil samples immediately after the fire (0 months), 2, 5, 7 and 9 months after the fire. We analysed soil pH, electrical conductivity (EC), major nutrients including calcium(Ca), magnesium(Mg), sodium(Na), and potassium(K), and theminor elements aluminium(Al), manganese (Mn), iron (Fe) and zinc (Zn). We also calculated the soil Na and K adsorption ratio (SPAR), Ca:Mg and Ca:Al. The results showed that this low-severity grassland fire significantly decreased soil pH, Al, and Mn but increased EC, Ca,Mg, and K,. There was no effect on Na, Fe, and Zn. Therewas a decrease of EC, Ca,Mg, and Na from 0months after the fire until 7 months after the fire,with an increase during the last sampling period. Fire did not significantly affect SPAR. Ca:Mg decreased significantly immediately after the fire, but not to critical levels. Ca:Al increased after the fire, reducing the potential effects of Al on plants. Overall, fire impactsweremainly limited to the immediate period after the fire

    Current Wildland Fire Patterns and Challenges in Europe : A Synthesis of National Perspectives

    Get PDF
    Changes in climate, land use, and land management impact the occurrence and severity of wildland fires in many parts of the world. This is particularly evident in Europe, where ongoing changes in land use have strongly modified fire patterns over the last decades. Although satellite data by the European Forest Fire Information System provide large-scale wildland fire statistics across European countries, there is still a crucial need to collect and summarize in-depth local analysis and understanding of the wildland fire condition and associated challenges across Europe. This article aims to provide a general overview of the current wildland fire patterns and challenges as perceived by national representatives, supplemented by national fire statistics (2009-2018) across Europe. For each of the 31 countries included, we present a perspective authored by scientists or practitioners from each respective country, representing a wide range of disciplines and cultural backgrounds. The authors were selected from members of the COST Action "Fire and the Earth System: Science & Society" funded by the European Commission with the aim to share knowledge and improve communication about wildland fire. Where relevant, a brief overview of key studies, particular wildland fire challenges a country is facing, and an overview of notable recent fire events are also presented. Key perceived challenges included (1) the lack of consistent and detailed records for wildland fire events, within and across countries, (2) an increase in wildland fires that pose a risk to properties and human life due to high population densities and sprawl into forested regions, and (3) the view that, irrespective of changes in management, climate change is likely to increase the frequency and impact of wildland fires in the coming decades. Addressing challenge (1) will not only be valuable in advancing national and pan-European wildland fire management strategies, but also in evaluating perceptions (2) and (3) against more robust quantitative evidence.Peer reviewe
    corecore