28 research outputs found

    Broad-band properties of the hard X-ray cataclysmic variables IGR J00234+6141 and 1RXS J213344.1+510725

    Full text link
    A significant number of cataclysmic variables were detected as hard X-ray sources in the INTEGRAL survey, most of them of the magnetic intermediate polar type. We present a detailed X-ray broad-band study of two new sources, IGR J00234+6141 and 1RXS J213344.1+510725, that allow us to classify them as secure members of the intermediate polar class. Timing and spectral analysis of IGR J00234+6141 are based on a XMM-Newton observation and INTEGRAL publicly available data. For 1RXS J213344.1+510725 we use XMM-Newton and Suzaku observations at different epochs, as well as INTEGRAL publicly available data. We determine a spin period of 561.64 +/- 0.56 s for the white dwarf in IGR J00234+6141. The X-ray pulses are observed up to about 2 keV. From XMM-Newton and Suzaku observations of 1RXS J213344.1+510725, we find a rotational period of 570.862 +/- 0.034 s. The observations span three epochs where the pulsation is observed to change at different energies both in amplitude and shape. In both objects, the spectral analysis spanned over a wide energy range, from 0.3 to 100 keV, shows the presence of multiple emission components absorbed by dense material. The X-ray spectrum of IGR J00234+6141 is consistent with a multi-temperature plasma with a maximum temperature of about 50 keV. In 1RXS J213344.1+510725, multiple optically thin components are inferred, as well as an optically thick (blackbody) soft X-ray emission with a temperature of about 100 eV. This latter adds 1RXS J213344.1+510725 to the growing group of soft X-ray intermediate polars. (abridged)Comment: 12 pages, 8 figures, 5 tables. Accepted for publication in A&

    Wavelet and R/S analysis of the X-ray flickering of cataclysmic variables

    Full text link
    Recently, wavelets and R/S analysis have been used as statistical tools to characterize the optical flickering of cataclysmic variables. Here we present the first comprehensive study of the statistical properties of X-ray flickering of cataclysmic variables in order to link them with physical parameters. We analyzed a sample of 97 X-ray light curves of 75 objects of all classes observed with the XMM-Newton space telescope. By using the wavelets analysis, each light curve has been characterized by two parameters, alpha and Sigma, that describe the energy distribution of flickering on different timescales and the strength at a given timescale, respectively. We also used the R/S analysis to determine the Hurst exponent of each light curve and define their degree of stochastic memory in time. The X-ray flickering is typically composed of long time scale events (1.5 < alpha < 3), with very similar strengths in all the subtypes of cataclysmic variables (-3 < Sigma < -1.5). The X-ray data are distributed in a much smaller area of the alpha-Sigma parameter space with respect to those obtained with optical light curves. The tendency of the optical flickering in magnetic systems to show higher Sigma values than the non-magnetic systems is not encountered in the X-rays. The Hurst exponents estimated for all light curves of the sample are larger than those found in the visible, with a peak at 0.82. In particular, we do not obtain values lower than 0.5. The X-ray flickering presents a persistent memory in time, which seems to be stronger in objects containing magnetic white dwarf primaries. The similarity of the X-ray flickering in objects of different classes together with the predominance of a persistent stochastic behavior can be explained it terms of magnetically-driven accretion processes acting in a considerable fraction of the analyzed objects.Comment: 10 pages, 3 figures, 2 tables. Language revision. Accepted for publication in A&

    Effects of Bariatric Surgery on COVID-19: a Multicentric Study from a High Incidence Area

    Get PDF
    Introduction: The favorable effects of bariatric surgery (BS) on overall pulmonary function and obesity-related comorbidities could influence SARS-CoV-2 clinical expression. This has been investigated comparing COVID-19 incidence and clinical course between a cohort of patients submitted to BS and a cohort of candidates for BS during the spring outbreak in Italy. Materials and Methods: From April to August 2020, 594 patients from 6 major bariatric centers in Emilia-Romagna were administered an 87-item telephonic questionnaire. Demographics, COVID-19 incidence, suggestive symptoms, and clinical outcome parameters of operated patients and candidates to BS were compared. The incidence of symptomatic COVID-19 was assessed including the clinical definition of probable case, according to World Health Organization criteria. Results: Three hundred fifty-three operated patients (Op) and 169 candidates for BS (C) were finally included in the statistical analysis. While COVID-19 incidence confirmed by laboratory tests was similar in the two groups (5.7% vs 5.9%), lower incidence of most of COVID-19-related symptoms, such as anosmia (p: 0.046), dysgeusia (p: 0.049), fever with rapid onset (p: 0.046) were recorded among Op patients, resulting in a lower rate of probable cases (14.4% vs 23.7%; p: 0.009). Hospitalization was more frequent in C patients (2.4% vs 0.3%, p: 0.02). One death in each group was reported (0.3% vs 0.6%). Previous pneumonia and malignancies resulted to be associated with symptomatic COVID-19 at univariate and multivariate analysis. Conclusion: Patients submitted to BS seem to develop less severe SARS-CoV-2 infection than subjects suffering from obesity

    Characterization of new hard X-ray Cataclysmic Variables

    Get PDF
    We aim at characterizing a sample of 9 new hard X-ray selected Cataclysmic Variable (CVs), to unambiguously identify them as magnetic systems of the Intermediate Polar (IP) type. We performed timing and spectral analysis by using X-ray, and simultaneous UV and optical data collected by XMM-Newton, complemented with hard X-ray data provided by INTEGRAL and Swift. The pulse arrival time were used to estimate the orbital periods. The X-ray spectra were fitted using composite models consisting of different absorbing columns and emission components. Strong X-ray pulses at the White Dwarf (WD) spin period are detected and found to decrease with energy. Most sources are spin-dominated systems in the X-rays, though four are beat dominated at optical wavelengths. We estimated the orbital period in all system (except for IGR J16500-3307), providing the first estimate for IGR J08390-4833, IGR J18308-1232, and IGR J18173-2509. All X-ray spectra are multi-temperature. V2069 Cyg and RX J0636+3535 posses a soft X-ray optically thick component at kT 80 eV. An intense K_alpha Fe line at 6.4 keV is detected in all sources. An absorption edge at 0.76 keV from OVII is detected in IGR J08390-4833. The WD masses and lower limits to the accretion rates are estimated. We found all sources to be IPs. IGR J08390-4833, V2069 Cyg, and IGR J16500-3307 are pure disc accretors, while IGR J18308-1232, IGR J1509-6649, IGR J17195-4100, and RX J0636+3535 display a disc-overflow accretion mode. All sources show a temperature gradient in the post-shock regions and a highly absorbed emission from material located in the pre-shock flow which is also responsible for the X-ray pulsations. Reflection at the WD surface is likely the origin of the fluorescent iron line. There is an increasing evidence for the presence of a warm absorber in IPs. The addition of 2 systems to the subgroup of soft X-ray IPs confirms a \sim 30% incidence.Comment: 23 pages, 11 figures, 7 tables, accepter for publication in A&A in April 201

    Fast optical source for quantum key distribution based on semiconductor optical amplifiers

    Get PDF
    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×1021.14\times 10^{-2} while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication

    Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation

    Get PDF
    © 2016 Macmillan Publishers Limited. All rights reserved. Concerted political attention has focused on reducing deforestation, and this remains the cornerstone of most biodiversity conservation strategies. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes. These disturbances occur both within forests, including selective logging and wildfires, and at the landscape level, through edge, area and isolation effects. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 69-80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil's Forest Code, resulted in a 39-54% loss of conservation value: 96-171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará's strictly protected areas is equivalent to the loss of 92,000-139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems

    Detecting brain network changes induced by a neurofeedback-based training for memory function rehabilitation after stroke

    No full text
    The efficacy of rehabilitative interventions in stroke patients is routinely assessed by means of a neuropsychological test battery. Nowadays, more evidences indicate that the neuroplasticity which occurs after stroke can be better understood by investigating changes in brain networks. In this pilot study we applied advanced methodologies for effective connectivity estimation in combination with graph theory approach, to define EEG derived descriptors of brain networks underlying memory tasks. In particular, we proposed such descriptors to identify substrates of efficacy of a Brain-Computer Interface (BCI) controlled neurofeedback-based intervention to improve cognitive function after stroke. EEG data were collected from two stroke patients before and after a neurofeedback-based training for working memory deficits. We show that the estimated brain connectivity indices were sensitive to different training intervention outcomes, thus suggesting an effective support to the neuropsychological assessment in the evaluation of the changes induced by the BCI-based rehabilitative intervention
    corecore