613 research outputs found
Computational fluid dynamic and thermal stress analysis of coatings for high-temperature corrosion protection of aerospace gas turbine blades
The current investigation presents detailed finite element simulations of coating stress analysis for a 3-dimensional, 3-layered model of a test sample representing a typical gas turbine component. Structural steel, Titanium alloy and Silicon Carbide are selected for main inner, middle and outermost layers respectively. ANSYS is employed to conduct three types of analysis- static structural, thermal stress analysis and also computational fluid dynamic erosion analysis (via ANSYS FLUENT). The specified geometry which corresponds to corrosion test samples exactly is discretized using a body-sizing meshing approach, comprising mainly of tetrahedron cells. Refinements were concentrated at the connection points between the layers to shift the focus towards the static effects dissipated between them. A detailed grid independence study is conducted to confirm the accuracy of the selected mesh densities. The momentum and energy equations were solved, and the viscous heating option was applied to represent improved thermal physics of heat transfer between the layers of the structures. A discrete phase model (DPM) in ANSYS FLUENT was employed which allows for the injection of continuous uniform air particles onto the model, thereby enabling an option for calculating the corrosion factor caused by hot air injection. Extensive visualization of results is provided. The simulations show that ceramic (silicon carbide) when combined with titanium clearly provide good thermal protection; however, the ceramic coating is susceptible to cracking and the titanium coating layer on its own achieves significant thermal resistance. Higher strains are computed for the two-layer model than the single layer model (thermal case). However even with titanium only present as a coating the maximum equivalent elastic strain is still dangerously close to the lower edge. Only with the three-layer combined ceramic and titanium coating model is the maximum equivalent strain pushed deeper towards the core central area. Here the desired effect of restricting high stresses to the strongest region of the gas turbine blade model is achieved, whereas in the other two models, lower strains are produced in the core central zones. Generally, the CFD analysis reveals that maximum erosion rates are confined to a local zone on the upper face of the three-layer system which is in fact the sacrificial layer (ceramic coating). The titanium is not debonded or damaged which is essential for creating a buffer to the actual blade surface and mitigating penetrative corrosive effects. The present analysis may further be generalized to consider three-dimensional blade geometries and corrosive chemical reaction effects encountered in gas turbine aero-engines.
Key words: Thermal coating; Silicon Carbide ceramic; ANSYS; Finite element stress analysis; CFD (computational fluid dynamics); mesh density; total deformation; erosion.</i
An effective mesh strategy for CFD modelling of polymer electrolyte membrane fuel cells
Computational fluid dynamics (CFD) is a major tool in PEM fuel cell research. Typical three-dimensional PEM fuel cell models involve more than 106 mesh elements. This makes the computation very intense and necessitates a methodology to mesh the computational domain that can keep the number of elements to a minimum while maintaining good accuracy. In this study, the effect of computational mesh in each direction on the accuracy of the solution is investigated in a systematic way. It is found that the mesh in different directions has a different degree of influence on the solution suggesting that the mesh in one direction can be coarser than the other. The proposed mesh strategy is capable of greatly reducing the number of mesh elements, hence computation time, while preserving the characteristics of important flow-field variables. Moreover, it is applicable to a wide range of cell sizes and flow-field configurations and should be used as a guideline for mesh generation
Surface Dynamics of Crude and Weathered Oil in the Presence of Dispersants: Laboratory Experiment and Numerical Simulation
Marine oil spills can have dire consequences for the environment. Research on their dynamics is important for the well-being of coastal communities and their economies. Propagation of oil spills is a very complex physical-chemical process. As seen during the Deepwater Horizon event in the Gulf of Mexico during 2010, one of the critical problems remaining for prediction of oil transport and dispersion in the marine environment is the small-scale structure and dynamics of surface oil spills. The laboratory experiments conducted in this work were focused on understanding the differences between the dynamics of crude and weathered oil spills and the effect of dispersants. After deposition on the still water surface, a drop of crude oil quickly spread into a thin slick; while at the same time, a drop of machine (proxy for weathered) oil did not show significant evolution. Subsequent application of dispersant to the crude oil slick resulted in a quick contraction or fragmentation of the slick into narrow wedges and tiny drops. Notably, the slick of machine oil did not show significant change in size or topology after spraying dispersant. An advanced multi-phase, volume of fluid computational fluid dynamics model, incorporating capillary forces, was able to explain some of the features observed in the laboratory experiment. As a result of the laboratory and modeling experiments, the new interpretation of the effect of dispersant on the oil dispersion process including capillary effects has been proposed, which is expected to lead to improved oil spill models and response strategies
A gas gun based technique for studying the role of temperature in dynamic fracture and fragmentation
Design and operation of a Rayleigh Ohnesorge Jetting Extensional Rheometer (ROJER) to study extensional properties of low viscosity polymer solutions
The Rayleigh Ohnesorge Jetting Extensional Rheometer (ROJER) enables measurement of very short relaxation times of low viscosity complex fluids such as those encountered in ink-jet printing and spraying applications. This paper focuses on the design and operation of the ROJER. The performance of two nozzle designs are compared using Newtonian fluids alongside a study using computational fluid dynamics (CFD). Subsequently a disposable nozzle is developed that overcomes issues of blockage and cleaning. The operability of this design is subject to a focused study where low viscosity polymer solutions are characterised. The test fluid materials are ethyl hydroxy-ethyl cellulose (EHEC) and poly ethylene oxide (PEO) mixed with water/glycerol solutions. Results obtained by the disposable nozzle are encouraging, paving the way for a more cost-efficient and robust ROJER setup
RF thermal and new cold part design studies on TTF-III input coupler for Project-X
RF power coupler is one of the key components in superconducting (SC) linac.
It provides RF power to the SC cavity and interconnects different temperature
layers (1.8K, 4.2K, 70K and 300K). TTF-III coupler is one of the most promising
candidates for the High Energy (HE) linac of Project X, but it cannot meet the
average power requirements because of the relatively high temperature rise on
the warm inner conductor, some design modifications will be required. In this
paper, we describe our simulation studies on the copper coating thickness on
the warm inner conductor with RRR value of 10 and 100. Our purpose is to
rebalance the dynamic and static loads, and finally lower the temperature rise
along the warm inner conductor. In addition, to get stronger coupling, better
power handling and less multipacting probability, one new cold part design was
proposed using 60mm coaxial line; the corresponding multipacting simulation
studies have also been investigated.Comment: 5 pages, 12 figures. Submitted to Chinese Physics C (Formerly High
Energy Physics and Nuclear Physics
Heat Transfer Through Vertically Downward-Blowing Single-Jet Air Curtains for Cold Rooms
One of the major sources of heat gain in refrigerated storage rooms is the infiltration of warm ambient air through doorways. Air curtains reduce this amount of heat transfer by blowing a plane air jet in the doorway while allowing an easy passage of the traffic. An air curtain device installed at the doorway of a cold room in a supermarket was studied in detail. Thermographic images were taken, recording the temperature field across the doorway. Tracer gas decay measurements were used to estimate the air flow rate through the door. These measurements were then used to validate a Computational Fluid Dynamics (CFD) model of the air curtain. With this CFD model the impact of some important air curtain parameters, such as the jet velocity and the jet nozzle width, on the heat transfer rate through the opening is determined. Finally, an expression to estimate the heat transfer rate through the air curtain is proposed
Recommended from our members
Investigation of cavitation and vapor shedding mechanisms in a Venturi nozzle
Cavitating flow dynamics are investigated in an axisymmetric converging-diverging Venturi nozzle. Computational Fluid Dynamics (CFD) results are compared with those from previous experiments. New analysis performed on the quantitative results from both data sets reveals a coherent trend and show that the simulations and experiments agree well. The CFD results have confirmed the interpretation of the high-speed images of the Venturi flow, which indicated there are two vapor shedding mechanisms that exist under different running conditions: re-entrant jet and condensation shock. Moreover, they provide further detail of the flow mechanisms that cannot be extracted from the experiments. For the first time with this cavitating Venturi nozzle, the re-entrant jet shedding mechanism is reliably achieved in CFD simulations. The condensation shock shedding mechanism is also confirmed, and details of the process are presented. These CFD results compare well with the experimental shadowgraphs, space-time plots and time-averaged reconstructe computed tomography (CT) slices of vapor fraction
- …